


Choose GPT-3.5 or Jordan Llama 2 and other open source models? After comprehensive comparison, the answer is
By comparing the parameters of GPT-3.5 and Llama 2 on different tasks, we can know under what circumstances choose GPT-3.5 and under what circumstances choose Llama 2 or other models.
Apparently, torqueing GPT-3.5 is very expensive. This paper experimentally verifies whether a manual torque model can approach the performance of GPT-3.5 at a fraction of the cost of GPT-3.5. Interestingly, the paper did.
Comparing the results on SQL tasks and function representation tasks, the paper found that:
GPT-3.5 performed well in two data sets (a subset of the Spider data set and Viggo Function representation data set) are slightly better than Code Llama 34B through Lora.
The training cost of GPT-3.5 is 4-6 times higher, and the deployment cost is also higher.
One of the conclusions of this experiment is that GPT-3.5 is suitable for initial verification work, but after that, a model like Llama 2 may be the best choice. To summarize briefly:
If you want validation to be the right way to solve a specific task/dataset, or want a fully managed environment, then adjust GPT-3.5.
If you want to save money, get maximum performance from your data set, have more flexibility in training and deploying infrastructure, and want or retain some data, then Just consume an open source model like Llama 2.
Next let’s see how the paper is implemented.
The following figure shows the performance of Code Llama 34B and GPT-3.5 trained to convergence on SQL tasks and function representation tasks. The results show that GPT-3.5 achieves better accuracy on both tasks.

In terms of hardware usage, the experiment used an A40 GPU, which is approximately US$0.475.
#In addition, the experiment enumerates two data sets that are very suitable for terrible experiments. The Spider data set is a subset of the Viggo function representing the data set.
In order to make a fair comparison with the GPT-3.5 model, experiments were performed on Llama with minimal hyperparameters.
Two key choices for this article’s experiments are to use Code Llama 34B and Lora parameters instead of full-parameter parameters.
The rules for Lora hyperparameter configuration were followed to a large extent in the experiment. The Lora load is as follows:
SQL prompt examples are as follows:
# SQL Reminder part of the display, please check the original blog
department : Department_ID [ INT ] primary_key Name [ TEXT ] Creation [ TEXT ] Ranking [ INT ] Budget_in_Billions [ INT ] Num_Employees [ INT ] head : head_ID [ INT ] primary_key name [ TEXT ] born_state [ TEXT ] age [ INT ] management : department_ID [ INT ] primary_key management.department_ID = department.Department_ID head_ID [ INT ] management.head_ID = head.head_ID temporary_acting [ TEXT ]
CREATE TABLE table_name_12 (class VARCHAR, frequency_mhz VARCHAR, city_of_license VARCHAR)
The code and data address of the SQL task: https://github.com/samlhuillier/spider-sql- finetune
The example of the function representation prompt is as follows:
#The output is as follows:
verify_attribute(name[Little Big Adventure], rating[average], has_multiplayer[no], platforms[PlayStation])During the evaluation phase, the two experiments quickly converged:
Original link:
https://ragntune.com/blog/gpt3.5-vs-llama2 -finetuning?continueFlag=11fc7786e20d498fc4daa79c5923e198
###The above is the detailed content of Choose GPT-3.5 or Jordan Llama 2 and other open source models? After comprehensive comparison, the answer is. For more information, please follow other related articles on the PHP Chinese website!

Since 2008, I've championed the shared-ride van—initially dubbed the "robotjitney," later the "vansit"—as the future of urban transportation. I foresee these vehicles as the 21st century's next-generation transit solution, surpas

Revolutionizing the Checkout Experience Sam's Club's innovative "Just Go" system builds on its existing AI-powered "Scan & Go" technology, allowing members to scan purchases via the Sam's Club app during their shopping trip.

Nvidia's Enhanced Predictability and New Product Lineup at GTC 2025 Nvidia, a key player in AI infrastructure, is focusing on increased predictability for its clients. This involves consistent product delivery, meeting performance expectations, and

Google's Gemma 2: A Powerful, Efficient Language Model Google's Gemma family of language models, celebrated for efficiency and performance, has expanded with the arrival of Gemma 2. This latest release comprises two models: a 27-billion parameter ver

This Leading with Data episode features Dr. Kirk Borne, a leading data scientist, astrophysicist, and TEDx speaker. A renowned expert in big data, AI, and machine learning, Dr. Borne offers invaluable insights into the current state and future traje

There were some very insightful perspectives in this speech—background information about engineering that showed us why artificial intelligence is so good at supporting people’s physical exercise. I will outline a core idea from each contributor’s perspective to demonstrate three design aspects that are an important part of our exploration of the application of artificial intelligence in sports. Edge devices and raw personal data This idea about artificial intelligence actually contains two components—one related to where we place large language models and the other is related to the differences between our human language and the language that our vital signs “express” when measured in real time. Alexander Amini knows a lot about running and tennis, but he still

Caterpillar's Chief Information Officer and Senior Vice President of IT, Jamie Engstrom, leads a global team of over 2,200 IT professionals across 28 countries. With 26 years at Caterpillar, including four and a half years in her current role, Engst

Google Photos' New Ultra HDR Tool: A Quick Guide Enhance your photos with Google Photos' new Ultra HDR tool, transforming standard images into vibrant, high-dynamic-range masterpieces. Ideal for social media, this tool boosts the impact of any photo,


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Atom editor mac version download
The most popular open source editor

SublimeText3 Linux new version
SublimeText3 Linux latest version

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

Zend Studio 13.0.1
Powerful PHP integrated development environment

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.