Home > Article > Technology peripherals > The impact of data augmentation technology on model generalization ability
The impact of data expansion technology on model generalization ability requires specific code examples
Abstract: With the widespread application of deep learning, more and more data Augmentation techniques are used to solve the problem of insufficient data. This article will explore the impact of data augmentation technology on model generalization capabilities and illustrate its effect through specific code examples.
First, import the required libraries and modules:
import numpy as np from keras import models from keras import layers from keras.preprocessing.image import ImageDataGenerator
Then, define the data generator and set the data augmentation parameters:
datagen = ImageDataGenerator( rotation_range=20, # 随机旋转角度范围 width_shift_range=0.2, # 随机水平平移范围 height_shift_range=0.2, # 随机垂直平移范围 shear_range=0.2, # 随机错切变换范围 zoom_range=0.2, # 随机缩放范围 horizontal_flip=True, # 随机水平翻转 fill_mode='nearest' # 边界填充方式 )
Next, load Training data and using the data generator for data augmentation:
train_data = np.load('train_data.npy') train_labels = np.load('train_labels.npy') train_generator = datagen.flow( train_data, train_labels, batch_size=32 )
Finally, define the model structure for training and evaluation:
model = models.Sequential() model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3))) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Flatten()) model.add(layers.Dense(64, activation='relu')) model.add(layers.Dense(10, activation='softmax')) model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy']) model.fit_generator( train_generator, steps_per_epoch=len(train_data) // 32, epochs=100 ) test_data = np.load('test_data.npy') test_labels = np.load('test_labels.npy') test_loss, test_acc = model.evaluate(test_data, test_labels)
Through the above code, we can see that during the training process , the data generator will randomly expand the training data according to the set parameters. In this way, the model can be exposed to more different sample changes during training and improve its generalization ability. Finally, through the evaluation process, the accuracy of the model on the test set can be obtained.
The above is the detailed content of The impact of data augmentation technology on model generalization ability. For more information, please follow other related articles on the PHP Chinese website!