search
HomeTechnology peripheralsAIFar ahead! BEVHeight++: A new solution for roadside visual 3D target detection!

Regress to the height of the ground to achieve a distance-agnostic formulation, thereby simplifying the optimization process for camera-aware only methods. On the 3D detection benchmark of roadside cameras, the method greatly exceeds all previous vision-centric methods. It yields significant improvements over BEVDepth of 1.9% NDS and 1.1% mAP. On the nuScenes test set, the method has made substantial progress, with NDS and mAP increasing by 2.8% and 1.7% respectively.

Title: BEVHeight: Towards robust vision-centered 3D object detection

Paper link: https://arxiv.org/pdf/2309.16179.pdf

Author Unit: Tsinghua University, Sun Yat-sen University, Cainiao Network, Peking University

From the first domestic autonomous driving community: finally completed the construction of 20 technical direction learning routes (BEV sensing/3D detection/multi-sensor fusion /SLAM and planning, etc.)

Although recent autonomous driving systems have focused on developing perception methods for vehicle sensors, people have often overlooked a method that uses smart roadside cameras to extend perception capabilities beyond the visual range. alternative methods. The authors found that state-of-the-art vision-centric BEV detection methods perform poorly on roadside cameras. This is because these methods mainly focus on recovering the depth about the camera center, where the depth difference between the car and the ground shrinks rapidly with distance. In this article, the author proposes a simple yet effective method, called BEVHeight, to solve this problem. Essentially, the authors regress to the height of the ground to achieve a distance-agnostic formulation, thereby simplifying the optimization process for camera-aware-only methods. By combining height and depth encoding techniques, a more accurate and robust projection from 2D to BEV space is achieved. The method significantly outperforms all previous vision-centric methods on the popular 3D detection benchmark of roadside cameras. For self-vehicle scenes, BEVHeight outperforms depth-only methods

Specifically, it yields 1.9% better NDS and 1.1% better mAP than BEVDepth when evaluated on the nuScenes validation set. To improve. In addition, on the nuScenes test set, the method achieved substantial progress, with NDS and mAP increasing by 2.8% and 1.7% respectively.

Far ahead! BEVHeight++: A new solution for roadside visual 3D target detection!

Figure 1: (a) To generate 3D bounding boxes from monocular images, state-of-the-art methods first explicitly or implicitly predict per-pixel depth to determine The 3D position of the foreground object versus the background. However, when we plotted the per-pixel depth on the image, we noticed that the difference between points on the roof and the surrounding ground quickly shrinks as the car moves away from the camera, making the optimization sub-optimal, especially for Distant objects. (b) Instead, we plot the per-pixel height to the ground and observe that this difference is agnostic regardless of distance and is visually more suitable for the network to detect objects. However, 3D position cannot be directly regressed by predicting height alone. (c) To this end, we propose a new framework BEVHeight to solve this problem. Empirical results show that our method outperforms the best method by 5.49% on clean settings and 28.2% on noisy settings.

Network structure

Far ahead! BEVHeight++: A new solution for roadside visual 3D target detection!

Comparison of prediction height and depth. (a) Overview of previous depth-based methods and our proposed height-based pipeline. Please note that this paper proposes a novel 2D to 3D projection module. (b) Plotting histograms of per-pixel depth (top) and ground height (bottom), it can be clearly observed that the depth range is over 200 meters, while the height is within 5 meters, which makes the height easier to learn.

Far ahead! BEVHeight++: A new solution for roadside visual 3D target detection!

In an image, there is a correlation between the row coordinates of an object and its depth and height. The position of the target in the image can be defined by (u, v), where v represents the row coordinate of the image. In (a) we show a visual example of introducing noise by adding rotational offsets in the roll and pitch directions to a normal distribution. In (b) we show a scatterplot of the depth distribution. In (c) we show the height above the ground. We can observe that the noise setting for height has a greater overlap with its original distribution compared to depth, indicating that height estimation is more robust

Far ahead! BEVHeight++: A new solution for roadside visual 3D target detection!

The overall framework of BEVHeight contains three sub-networks, namely the depth-based branch (cyan), the height-based branch (green) and the feature fusion process (grey). The depth-based pipeline converts image view features into depth-based BEV features (D-based BEV) using the estimated per-pixel depth. The height-based pipeline generates height-based BEV features (H-based BEV) using ground height predictions of lift features in image views. Feature fusion includes image fusion and bird's-eye view fusion. Image-view fusion obtains fusion features by cascading height distribution and image features, which are used for subsequent upgrading operations. Bird's-eye view fusion obtains fused BEV features from height-based BEV features and depth-based BEV features through deformable cross-attention, and then uses it as the input of the detection head

Far ahead! BEVHeight++: A new solution for roadside visual 3D target detection!

Far ahead! BEVHeight++: A new solution for roadside visual 3D target detection!

Experimental results

Far ahead! BEVHeight++: A new solution for roadside visual 3D target detection!

Far ahead! BEVHeight++: A new solution for roadside visual 3D target detection!

Far ahead! BEVHeight++: A new solution for roadside visual 3D target detection!

Far ahead! BEVHeight++: A new solution for roadside visual 3D target detection!

##The content that needs to be rewritten is: Original link: https://mp.weixin.qq.com/s/AdCXYzHIy2lTfAHk2AZ4_w

The above is the detailed content of Far ahead! BEVHeight++: A new solution for roadside visual 3D target detection!. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:51CTO.COM. If there is any infringement, please contact admin@php.cn delete
在 CARLA自动驾驶模拟器中添加真实智体行为在 CARLA自动驾驶模拟器中添加真实智体行为Apr 08, 2023 pm 02:11 PM

arXiv论文“Insertion of real agents behaviors in CARLA autonomous driving simulator“,22年6月,西班牙。由于需要快速prototyping和广泛测试,仿真在自动驾驶中的作用变得越来越重要。基于物理的模拟具有多种优势和益处,成本合理,同时消除了prototyping、驾驶员和弱势道路使用者(VRU)的风险。然而,主要有两个局限性。首先,众所周知的现实差距是指现实和模拟之间的差异,阻碍模拟自主驾驶体验去实现有效的现实世界

特斯拉自动驾驶算法和模型解读特斯拉自动驾驶算法和模型解读Apr 11, 2023 pm 12:04 PM

特斯拉是一个典型的AI公司,过去一年训练了75000个神经网络,意味着每8分钟就要出一个新的模型,共有281个模型用到了特斯拉的车上。接下来我们分几个方面来解读特斯拉FSD的算法和模型进展。01 感知 Occupancy Network特斯拉今年在感知方面的一个重点技术是Occupancy Network (占据网络)。研究机器人技术的同学肯定对occupancy grid不会陌生,occupancy表示空间中每个3D体素(voxel)是否被占据,可以是0/1二元表示,也可以是[0, 1]之间的

一文通览自动驾驶三大主流芯片架构一文通览自动驾驶三大主流芯片架构Apr 12, 2023 pm 12:07 PM

当前主流的AI芯片主要分为三类,GPU、FPGA、ASIC。GPU、FPGA均是前期较为成熟的芯片架构,属于通用型芯片。ASIC属于为AI特定场景定制的芯片。行业内已经确认CPU不适用于AI计算,但是在AI应用领域也是必不可少。 GPU方案GPU与CPU的架构对比CPU遵循的是冯·诺依曼架构,其核心是存储程序/数据、串行顺序执行。因此CPU的架构中需要大量的空间去放置存储单元(Cache)和控制单元(Control),相比之下计算单元(ALU)只占据了很小的一部分,所以CPU在进行大规模并行计算

自动驾驶汽车激光雷达如何做到与GPS时间同步?自动驾驶汽车激光雷达如何做到与GPS时间同步?Mar 31, 2023 pm 10:40 PM

gPTP定义的五条报文中,Sync和Follow_UP为一组报文,周期发送,主要用来测量时钟偏差。 01 同步方案激光雷达与GPS时间同步主要有三种方案,即PPS+GPRMC、PTP、gPTPPPS+GPRMCGNSS输出两条信息,一条是时间周期为1s的同步脉冲信号PPS,脉冲宽度5ms~100ms;一条是通过标准串口输出GPRMC标准的时间同步报文。同步脉冲前沿时刻与GPRMC报文的发送在同一时刻,误差为ns级别,误差可以忽略。GPRMC是一条包含UTC时间(精确到秒),经纬度定位数据的标准格

特斯拉自动驾驶硬件 4.0 实物拆解:增加雷达,提供更多摄像头特斯拉自动驾驶硬件 4.0 实物拆解:增加雷达,提供更多摄像头Apr 08, 2023 pm 12:11 PM

2 月 16 日消息,特斯拉的新自动驾驶计算机,即硬件 4.0(HW4)已经泄露,该公司似乎已经在制造一些带有新系统的汽车。我们已经知道,特斯拉准备升级其自动驾驶硬件已有一段时间了。特斯拉此前向联邦通信委员会申请在其车辆上增加一个新的雷达,并称计划在 1 月份开始销售,新的雷达将意味着特斯拉计划更新其 Autopilot 和 FSD 的传感器套件。硬件变化对特斯拉车主来说是一种压力,因为该汽车制造商一直承诺,其自 2016 年以来制造的所有车辆都具备通过软件更新实现自动驾驶所需的所有硬件。事实证

端到端自动驾驶中轨迹引导的控制预测:一个简单有力的基线方法TCP端到端自动驾驶中轨迹引导的控制预测:一个简单有力的基线方法TCPApr 10, 2023 am 09:01 AM

arXiv论文“Trajectory-guided Control Prediction for End-to-end Autonomous Driving: A Simple yet Strong Baseline“, 2022年6月,上海AI实验室和上海交大。当前的端到端自主驾驶方法要么基于规划轨迹运行控制器,要么直接执行控制预测,这跨越了两个研究领域。鉴于二者之间潜在的互利,本文主动探索两个的结合,称为TCP (Trajectory-guided Control Prediction)。具

一文聊聊自动驾驶中交通标志识别系统一文聊聊自动驾驶中交通标志识别系统Apr 12, 2023 pm 12:34 PM

什么是交通标志识别系统?汽车安全系统的交通标志识别系统,英文翻译为:Traffic Sign Recognition,简称TSR,是利用前置摄像头结合模式,可以识别常见的交通标志 《 限速、停车、掉头等)。这一功能会提醒驾驶员注意前面的交通标志,以便驾驶员遵守这些标志。TSR 功能降低了驾驶员不遵守停车标志等交通法规的可能,避免了违法左转或者无意的其他交通违法行为,从而提高了安全性。这些系统需要灵活的软件平台来增强探测算法,根据不同地区的交通标志来进行调整。交通标志识别原理交通标志识别又称为TS

一文聊聊SLAM技术在自动驾驶的应用一文聊聊SLAM技术在自动驾驶的应用Apr 09, 2023 pm 01:11 PM

定位在自动驾驶中占据着不可替代的地位,而且未来有着可期的发展。目前自动驾驶中的定位都是依赖RTK配合高精地图,这给自动驾驶的落地增加了不少成本与难度。试想一下人类开车,并非需要知道自己的全局高精定位及周围的详细环境,有一条全局导航路径并配合车辆在该路径上的位置,也就足够了,而这里牵涉到的,便是SLAM领域的关键技术。什么是SLAMSLAM (Simultaneous Localization and Mapping),也称为CML (Concurrent Mapping and Localiza

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
Repo: How To Revive Teammates
1 months agoBy尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

MantisBT

MantisBT

Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

VSCode Windows 64-bit Download

VSCode Windows 64-bit Download

A free and powerful IDE editor launched by Microsoft

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools

SublimeText3 English version

SublimeText3 English version

Recommended: Win version, supports code prompts!

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor