


The implementation of fuzzy search and semantic search based on Elasticsearch in PHP requires specific code examples
In the modern Internet environment, search functions have become a must for various applications. One of the equipment functions. Traditional fuzzy search often can only perform simple matching based on keywords, but lacks an understanding of user intentions. Semantic search can better capture the user's intent and provide more precise search results. In this article, we will introduce how to use Elasticsearch to implement fuzzy search and semantic search in PHP, and give specific code examples.
Elasticsearch is an open source search engine based on Lucene, which provides rich search functions and efficient distributed search support. In PHP, we can use the official client library provided by Elasticsearch - Elasticsearch-PHP to interact with Elasticsearch.
First, we need to introduce the Elasticsearch-PHP library into the PHP project. It can be installed through Composer. You only need to add the following dependencies to the composer.json file in the project root directory:
{ "require": { "elasticsearch/elasticsearch": "^7.0" } }
and then execute the composer install
command to install.
Next, we need to establish a connection with Elasticsearch. In PHP, this can be achieved through the following code:
<?php require 'vendor/autoload.php'; $client = ElasticsearchClientBuilder::create() ->setHosts(['localhost:9200']) // 修改为 Elasticsearch 的地址和端口 ->build(); ?>
localhost:9200
in the above code is the address and port of the Elasticsearch service. By default, the Elasticsearch listening address is localhost and the port is 9200. If Elasticsearch is running on another machine or the port is different, it needs to be modified to the corresponding value.
Now, we can start to implement the fuzzy search function. The following is a simple example:
<?php require 'vendor/autoload.php'; $client = ElasticsearchClientBuilder::create() ->setHosts(['localhost:9200']) ->build(); $params = [ 'index' => 'my_index', 'body' => [ 'query' => [ 'match' => [ 'title' => [ 'query' => '搜索关键字', 'fuzziness' => 'AUTO', ], ], ], ], ]; $response = $client->search($params); foreach ($response['hits']['hits'] as $hit) { echo $hit['_source']['title'] . " "; } ?>
my_index
in the above code is an index in Elasticsearch, and title
is a field name. We perform fuzzy search through the match
query, and use the fuzziness
parameter to set the degree of fuzzy matching. AUTO
means to let Elasticsearch automatically determine the degree of fuzzy matching.
Of course, if you need more complex search functions, you can also use other query types provided by Elasticsearch, such as multi_match
, bool
, etc. For specific usage methods, please refer to the official documentation of Elasticsearch.
Next, we will introduce how to implement the semantic search function. In order to implement semantic search, we need to use a plug-in called Elasticsearch-Elasticsearch Elasticsearch-Elasticsearch-DSL. This plug-in provides a DSL (Domain Specific Language) that can build complex queries through PHP.
First, we need to modify the composer.json file and add the following dependencies:
{ "require": { "elasticsearch/elasticsearch": "^7.0", "elastic/elasticsearch-dsl": "^8.0" } }
Then execute the composer install
command to install.
Next, we can use Elasticsearch-Elasticsearch-DSL to build semantic queries. The following is a simple example:
<?php require 'vendor/autoload.php'; use ElasticsearchClientBuilder; use ElasticsearchDSLSearch; $client = ClientBuilder::create() ->setHosts(['localhost:9200']) ->build(); $search = new Search(); $search->addQuery( (new ElasticsearchElasticsearchDSLQueryMultiMatchQuery('搜索关键词', ['title', 'content'])) ->setFuzziness('AUTO') ); $params = [ 'index' => 'my_index', 'body' => $search->toArray(), ]; $response = $client->search($params); foreach ($response['hits']['hits'] as $hit) { echo $hit['_source']['title'] . " "; } ?>
title
and content
in the above code are field names in Elasticsearch, which we build through MultiMatchQuery
Create a multi-field query and set the degree of fuzzy matching.
Through the above code examples, we can use Elasticsearch to implement fuzzy search and semantic search functions in PHP. Of course, in actual business scenarios, the search function can be further optimized and expanded to achieve more accurate and efficient search results. Hope this article helps you!
The above is the detailed content of Fuzzy search and semantic search implementation based on Elasticsearch in PHP. For more information, please follow other related articles on the PHP Chinese website!

Redis与Elasticsearch的区别与使用场景随着互联网信息的快速发展和海量化,数据的高效存储和检索变得越来越重要。为此,NoSQL(NotOnlySQL)类型的数据库出现了,其中又以Redis和Elasticsearch较为流行。本文将对Redis和Elasticsearch进行比较,并探讨它们的使用场景。Redis与Elasticsearch

随着大数据和云计算技术的发展,搜索引擎也在不断创新。Elasticsearch,作为一个基于Lucene的全文搜索引擎,已经成为了一种流行的选择。这里将会介绍如何在PHP编程中使用Elasticsearch。安装Elasticsearch首先,我们需要安装和设置Elasticsearch。可以在官方网站下载和安装Elasticsearch,具体安装方法可以参

商品检索大家应该都在各种电商网站检索过商品,检索商品一般都是通过什么实现呢?搜索引擎Elasticsearch。那么问题来了,商品上架,数据一般写入到MySQL的数据库中,那么用于检索的数据又是怎么同步到Elasticsearch的呢?MySQL同步ES1.同步双写这是能想到的最直接的方式,在写入MySQL,直接也同步往ES里写一份数据。同步双写对于这种方式:优点:实现简单缺点:业务耦合,商品的管理中耦合大量数据同步代码影响性能,写入两个存储,响应时间变长不便扩展:搜索可能有一些个性化需求,需要

随着互联网的发展,企业面对的文本数据越来越庞大。如何快速、准确地检索出相关内容,成为企业在信息化领域的重要课题之一。Elasticsearch作为一个基于Lucene的开源搜索引擎,具有高可用性、高可扩展性和快速检索的特点,成为企业全文检索的首选方案之一。而PHP作为一门流行的服务器端编程语言,也能够快速进行Web开发和API开发,成为与Elasticsea

如何使用Elasticsearch和PHP构建智能问答系统引言:随着人工智能技术的快速发展,智能问答系统正逐渐成为人们获取信息的重要方式。Elasticsearch作为一个强大的搜索引擎,拥有快速、高效的全文搜索和分析能力,可以为智能问答系统提供强大的支持。本文将介绍如何使用Elasticsearch和PHP构建一个简单的智能问答系统,并提供相应的代码示例。

PHP和Elasticsearch实现的高性能文本分类技术引言:在当前的信息时代,文本分类技术被广泛应用于搜索引擎、推荐系统、情感分析等领域。而PHP是一种广泛使用的服务器端脚本语言,具有简单易学、效率高等特点。在本文中,我们将介绍如何利用PHP和Elasticsearch实现高性能的文本分类技术。一、Elasticsearch简介Elasticsearch

1.业务层同步由于对MySQL数据的操作也是在业务层完成的,所以在业务层同步操作另外的数据源也是很自然的,比较常见的做法就是在ORM的hooks钩子里编写相关同步代码。这种方式的缺点是,当服务越来越多时,同步的部分可能会过于分散从而导致难以更新迭代,例如对ES索引进行不兼容迁移时就可能会牵一发而动全身。2.中间件同步当应用架构演变为微服务时,各个服务里可能不再直接调用MySQL,而是通过一层middleware中间件,这时候就可以在中间件操作MySQL的同时同步其它数据源。这种方式需要中间件去适

随着互联网的快速发展和数据量的增加,如何高效地进行全文搜索已经成为了越来越多开发者面临的问题。Elasticsearch是一种流行的全文搜索引擎,它能够快速处理大量的文本数据,并对其进行检索和分析,这使得它成为了很多Web应用程序的首选工具。现在,ThinkPHP6也已经开始支持Elasticsearch全文搜索操作,为开发者带来更加高效的搜索方案。首先,我


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

SublimeText3 English version
Recommended: Win version, supports code prompts!

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

SublimeText3 Linux new version
SublimeText3 Linux latest version

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.
