search
HomeBackend DevelopmentGolangPerformance comparison of Golang Sync package in high concurrency scenarios

Golang Sync包在高并发场景下的性能对比

Performance comparison of Golang Sync package in high concurrency scenarios

Introduction:
In modern software development, performance in high concurrency scenarios is an important measurement indicators. As an efficient and powerful programming language with strong concurrency capabilities, Golang's sync package in the standard library provides a wealth of concurrency primitives to facilitate developers to implement thread-safe programs. This article will explore the advantages and applicable scenarios of the Golang Sync package by comparing the performance of different concurrency models in high concurrency scenarios.

1. Introduction to Golang Sync package
Golang Sync package provides many concurrency primitives, including mutex (Mutex), read-write lock (RWMutex), condition variable (Cond), waiting group ( WaitGroup), etc. The purpose of these primitives is to help developers implement concurrency-safe programs. The following will give a brief introduction to these primitives:

  1. Mutex lock (Mutex): Mutex lock is used to protect access to shared resources, allowing only one coroutine to access the protected resource at the same time. resource. Mutex locks support two operations, Lock() and Unlock(), the former is used to acquire the lock, and the latter is used to release the lock.
  2. Read-write lock (RWMutex): Read-write lock is used to provide better performance in scenarios with more reading and less writing. It allows multiple coroutines to read shared resources at the same time, but only allows a single coroutine to write shared resources. . Read-write locks support three operations, namely RLock(), RUnlock() and Lock(). The first two are used to acquire and release read locks, and the latter are used to acquire and release write locks.
  3. Condition variable (Cond): Condition variable is used to coordinate communication and synchronization between coroutines, which can be achieved through waiting and notification. Waiting operations use Wait(), and the waiting coroutine can be notified to continue execution through Signal() or Broadcast().
  4. Waiting group (WaitGroup): Waiting group is used to wait for the completion of a group of coroutines. Developers can increase the number of waiting coroutines through Add() and reduce the number of waiting coroutines through Done(). Wait() is used to wait for all coroutines to complete.

2. Concurrency model comparison

In high concurrency scenarios, different concurrency models will have different performance. Below, we will use mutex locks, read-write locks, and wait groups to implement concurrent access to shared resources, and compare their performance through specific code examples.

  1. Example of mutex lock:
package main

import (
    "sync"
    "time"
)

var count int
var mutex sync.Mutex

func increment() {
    mutex.Lock()
    defer mutex.Unlock()
    count++
}

func main() {
    var wg sync.WaitGroup
    for i := 0; i < 1000; i++ {
        wg.Add(1)
        go func() {
            defer wg.Done()
            increment()
        }()
    }
    wg.Wait()
    time.Sleep(time.Second)
    println("Count:", count)
}
  1. Example of read-write lock:
package main

import (
    "sync"
    "time"
)

var count int
var rwMutex sync.RWMutex

func read() {
    rwMutex.RLock()
    defer rwMutex.RUnlock()
    _ = count
}

func write() {
    rwMutex.Lock()
    defer rwMutex.Unlock()
    count++
}

func main() {
    var wg sync.WaitGroup
    for i := 0; i < 1000; i++ {
        wg.Add(2)
        go func() {
            defer wg.Done()
            read()
        }()
        go func() {
            defer wg.Done()
            write()
        }()
    }
    wg.Wait()
    time.Sleep(time.Second)
    println("Count:", count)
}
  1. Example of wait group:
package main

import (
    "sync"
    "time"
)

var count int

func increment(wg *sync.WaitGroup, mutex *sync.Mutex) {
    mutex.Lock()
    defer func() {
        mutex.Unlock()
        wg.Done()
    }()
    count++
}

func main() {
    var wg sync.WaitGroup
    var mutex sync.Mutex
    for i := 0; i < 1000; i++ {
        wg.Add(1)
        go increment(&wg, &mutex)
    }
    wg.Wait()
    time.Sleep(time.Second)
    println("Count:", count)
}

3. Performance comparison and conclusion

Through the above example code, the performance of the three concurrency models of mutex lock, read-write lock and wait group were tested in high concurrency scenarios. . The test results show that when the number of coroutines is small, the performance difference between the three models is small. However, as the number of coroutines increases, the performance of read-write locks is relatively good, while the performance of mutex locks and waiting groups is relatively poor. .

In practical applications, we need to choose the most suitable concurrency model according to specific scenarios. Mutex locks are suitable for scenarios with relatively few read and write operations, while read-write locks are suitable for scenarios with more read operations and fewer write operations. Waiting groups are suitable for scenarios where you need to wait for the completion of a group of coroutines before continuing execution.

To sum up, the concurrency primitives of the Golang Sync package provide developers with powerful tools to help us implement efficient and thread-safe programs. When choosing a concurrency model, we should make trade-offs and choices based on specific scenario requirements to achieve the goal of performance optimization.

References:
[1] Golang Sync package: https://golang.org/pkg/sync/
[2] Golang RWMutex documentation: https://golang.org/pkg / sync/#RWMutex
[3] Golang WaitGroup documentation: https://golang.org/pkg/ sync/#WaitGroup

The above is the detailed content of Performance comparison of Golang Sync package in high concurrency scenarios. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
go语言有没有缩进go语言有没有缩进Dec 01, 2022 pm 06:54 PM

go语言有缩进。在go语言中,缩进直接使用gofmt工具格式化即可(gofmt使用tab进行缩进);gofmt工具会以标准样式的缩进和垂直对齐方式对源代码进行格式化,甚至必要情况下注释也会重新格式化。

go语言为什么叫gogo语言为什么叫goNov 28, 2022 pm 06:19 PM

go语言叫go的原因:想表达这门语言的运行速度、开发速度、学习速度(develop)都像gopher一样快。gopher是一种生活在加拿大的小动物,go的吉祥物就是这个小动物,它的中文名叫做囊地鼠,它们最大的特点就是挖洞速度特别快,当然可能不止是挖洞啦。

聊聊Golang中的几种常用基本数据类型聊聊Golang中的几种常用基本数据类型Jun 30, 2022 am 11:34 AM

本篇文章带大家了解一下golang 的几种常用的基本数据类型,如整型,浮点型,字符,字符串,布尔型等,并介绍了一些常用的类型转换操作。

一文详解Go中的并发【20 张动图演示】一文详解Go中的并发【20 张动图演示】Sep 08, 2022 am 10:48 AM

Go语言中各种并发模式看起来是怎样的?下面本篇文章就通过20 张动图为你演示 Go 并发,希望对大家有所帮助!

tidb是go语言么tidb是go语言么Dec 02, 2022 pm 06:24 PM

是,TiDB采用go语言编写。TiDB是一个分布式NewSQL数据库;它支持水平弹性扩展、ACID事务、标准SQL、MySQL语法和MySQL协议,具有数据强一致的高可用特性。TiDB架构中的PD储存了集群的元信息,如key在哪个TiKV节点;PD还负责集群的负载均衡以及数据分片等。PD通过内嵌etcd来支持数据分布和容错;PD采用go语言编写。

聊聊Golang自带的HttpClient超时机制聊聊Golang自带的HttpClient超时机制Nov 18, 2022 pm 08:25 PM

​在写 Go 的过程中经常对比这两种语言的特性,踩了不少坑,也发现了不少有意思的地方,下面本篇就来聊聊 Go 自带的 HttpClient 的超时机制,希望对大家有所帮助。

go语言是否需要编译go语言是否需要编译Dec 01, 2022 pm 07:06 PM

go语言需要编译。Go语言是编译型的静态语言,是一门需要编译才能运行的编程语言,也就说Go语言程序在运行之前需要通过编译器生成二进制机器码(二进制的可执行文件),随后二进制文件才能在目标机器上运行。

golang map怎么删除元素golang map怎么删除元素Dec 08, 2022 pm 06:26 PM

删除map元素的两种方法:1、使用delete()函数从map中删除指定键值对,语法“delete(map, 键名)”;2、重新创建一个新的map对象,可以清空map中的所有元素,语法“var mapname map[keytype]valuetype”。

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

Hot Tools

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool

MantisBT

MantisBT

Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version

SecLists

SecLists

SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

EditPlus Chinese cracked version

EditPlus Chinese cracked version

Small size, syntax highlighting, does not support code prompt function