search
HomeBackend DevelopmentPython TutorialCreation and tuning of sales forecast model based on Django Prophet

Creation and tuning of sales forecast model based on Django Prophet

Sep 29, 2023 pm 01:21 PM
djangoSales Forecastprophet

基于Django Prophet的销售预测模型的创建和调优

The creation and tuning of a sales forecast model based on Django Prophet requires specific code examples

Introduction:
In modern business, sales forecasting has always been very important. An important piece of work. Accurate sales forecasts can help companies effectively make decisions such as inventory management, resource allocation, and market planning, thereby improving the company's competitiveness and profitability. Traditional sales forecasting methods often require a lot of statistical and mathematical knowledge and are less efficient. However, with the development of machine learning and data science, the application of predictive models is becoming more and more common in sales forecasting.

This article will introduce how to create and tune a sales forecast model based on Django Prophet, and provide specific code examples to help readers better understand and apply this technology.

1. Introduction to Django Prophet
Django Prophet is a Python library developed by Facebook for time series prediction. It is based on the statistical "variable state space model" and uses the Bayesian model fitting method to predict future time series, and has high flexibility and accuracy. In sales forecasting, Django Prophet can be used to analyze and predict sales trends, seasonal changes, holiday effects, etc., providing strong support for corporate decision-making.

2. Create a sales forecast model
The following are the steps and code examples for creating a sales forecast model based on Django Prophet:

  1. Import library

    from prophet import Prophet
  2. Import and organize data

    import pandas as pd
    
    # 导入销售数据
    sales_data = pd.read_csv('sales_data.csv')
    sales_data['ds'] = pd.to_datetime(sales_data['ds'])
    
    # 创建Prophet模型
    model = Prophet()
    
    # 设置Prophet模型的参数和节假日效应
    model.add_seasonality(name='monthly', period=30.5, fourier_order=5)
    model.add_country_holidays(country_name='US')
  3. Fitting model

    model.fit(sales_data)
  4. Predict future sales

    future = model.make_future_dataframe(periods=365)
    forecast = model.predict(future)

The above code will import sales data, convert the date format to the format required by Prophet, create a Prophet model, and set the parameters and holiday effects of the model. Then, a time series for the next year is generated by fitting the model and calling the make_future_dataframe() function, and forecasted using the predict() function.

3. Tuning the model
In order to improve the prediction accuracy of the model, we can tune the model by adjusting the parameters of the model and the holiday effect. The following are some commonly used tuning methods and sample code:

  1. Adjust seasonal changes

    model.add_seasonality(name='quarterly', period=365.25/4, fourier_order=10)
  2. Adjust holiday effects

    model.add_country_holidays(country_name='US')
    model.add_country_holidays(country_name='US', years=[2018, 2019])
  3. Adjust model hyperparameters

    model = Prophet(growth='linear', seasonality_mode='multiplicative')

The above code example demonstrates how to improve the accuracy of the model by adding seasonal changes, specific holiday effects, and adjusting the model's hyperparameters sex.

Conclusion:
This article introduces the method of creating and tuning a sales forecast model based on Django Prophet, and provides specific code examples. By using Django Prophet, companies can more accurately predict sales trends and seasonal changes, providing strong support for corporate decision-making. Readers can flexibly use these methods and sample codes according to their own needs to create and tune sales forecast models in practical applications.

The above is the detailed content of Creation and tuning of sales forecast model based on Django Prophet. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Python vs. C  : Understanding the Key DifferencesPython vs. C : Understanding the Key DifferencesApr 21, 2025 am 12:18 AM

Python and C each have their own advantages, and the choice should be based on project requirements. 1) Python is suitable for rapid development and data processing due to its concise syntax and dynamic typing. 2)C is suitable for high performance and system programming due to its static typing and manual memory management.

Python vs. C  : Which Language to Choose for Your Project?Python vs. C : Which Language to Choose for Your Project?Apr 21, 2025 am 12:17 AM

Choosing Python or C depends on project requirements: 1) If you need rapid development, data processing and prototype design, choose Python; 2) If you need high performance, low latency and close hardware control, choose C.

Reaching Your Python Goals: The Power of 2 Hours DailyReaching Your Python Goals: The Power of 2 Hours DailyApr 20, 2025 am 12:21 AM

By investing 2 hours of Python learning every day, you can effectively improve your programming skills. 1. Learn new knowledge: read documents or watch tutorials. 2. Practice: Write code and complete exercises. 3. Review: Consolidate the content you have learned. 4. Project practice: Apply what you have learned in actual projects. Such a structured learning plan can help you systematically master Python and achieve career goals.

Maximizing 2 Hours: Effective Python Learning StrategiesMaximizing 2 Hours: Effective Python Learning StrategiesApr 20, 2025 am 12:20 AM

Methods to learn Python efficiently within two hours include: 1. Review the basic knowledge and ensure that you are familiar with Python installation and basic syntax; 2. Understand the core concepts of Python, such as variables, lists, functions, etc.; 3. Master basic and advanced usage by using examples; 4. Learn common errors and debugging techniques; 5. Apply performance optimization and best practices, such as using list comprehensions and following the PEP8 style guide.

Choosing Between Python and C  : The Right Language for YouChoosing Between Python and C : The Right Language for YouApr 20, 2025 am 12:20 AM

Python is suitable for beginners and data science, and C is suitable for system programming and game development. 1. Python is simple and easy to use, suitable for data science and web development. 2.C provides high performance and control, suitable for game development and system programming. The choice should be based on project needs and personal interests.

Python vs. C  : A Comparative Analysis of Programming LanguagesPython vs. C : A Comparative Analysis of Programming LanguagesApr 20, 2025 am 12:14 AM

Python is more suitable for data science and rapid development, while C is more suitable for high performance and system programming. 1. Python syntax is concise and easy to learn, suitable for data processing and scientific computing. 2.C has complex syntax but excellent performance and is often used in game development and system programming.

2 Hours a Day: The Potential of Python Learning2 Hours a Day: The Potential of Python LearningApr 20, 2025 am 12:14 AM

It is feasible to invest two hours a day to learn Python. 1. Learn new knowledge: Learn new concepts in one hour, such as lists and dictionaries. 2. Practice and exercises: Use one hour to perform programming exercises, such as writing small programs. Through reasonable planning and perseverance, you can master the core concepts of Python in a short time.

Python vs. C  : Learning Curves and Ease of UsePython vs. C : Learning Curves and Ease of UseApr 19, 2025 am 12:20 AM

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Atom editor mac version download

Atom editor mac version download

The most popular open source editor

SublimeText3 English version

SublimeText3 English version

Recommended: Win version, supports code prompts!

mPDF

mPDF

mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

DVWA

DVWA

Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.