search
HomeBackend DevelopmentGolangGolang and FFmpeg: Technology for real-time video streaming transcoding and encapsulation

Golang与FFmpeg: 实现实时视频流转码与封装的技术

Golang and FFmpeg: Real-time video stream transcoding and encapsulation technology requires specific code examples

Overview:
In today's Internet era, video has become an integral part of people's lives. However, due to the inconsistency of video formats and differences in network environments, there are often some problems in directly transmitting videos over the network, such as slow transmission speeds and reduced video quality. To solve these problems, we can use video transcoding and encapsulation technology to encode and decode the video stream and encapsulate it into a format suitable for network transmission. This article will introduce how to use Golang and FFmpeg to implement real-time video stream transcoding and encapsulation technology, and give specific code examples.

Technical background:
Golang is a powerful programming language. It has the characteristics of high concurrency, simplicity and ease of use, and fast compilation. It is suitable for network programming. FFmpeg is a cross-platform audio and video processing tool that can handle almost all common audio and video formats. Combining Golang and FFmpeg, we can achieve efficient video stream transcoding and encapsulation.

Specific implementation steps:

  1. Introduce necessary libraries
    First, introduce FFmpeg-related libraries into Golang. In Golang, you can use cgo to call C language libraries. You can obtain FFmpeg related libraries through the go get command.
  2. Open the video input stream
    Use FFmpeg's avformat_open_input function to open the video input stream. This function needs to pass in the address of the input stream, the encapsulation format of the input stream, and other related parameters.
  3. Find video stream information
    Use FFmpeg's avformat_find_stream_info function to find relevant information about the input stream, such as video stream format, encoder, frame rate, etc. This function will fill in the relevant information of the AVFormatContext structure.
  4. Open the video output stream
    Use FFmpeg's avformat_alloc_output_context2 function to create the context of the video output stream. This function needs to pass in the encapsulation format of the output stream and the output file name.
  5. Add video stream information
    Copy the input stream information to the output stream.
  6. Open the output file
    Use FFmpeg's avio_open2 function to open the output file. This function requires the context of the output stream, the output file name, and other related parameters.
  7. Encoding and Encapsulation
    Loop to read each frame data of the video stream, and then encode the frame data. Video frames can be encoded using FFmpeg's avcodec_encode_video2 function. After the encoding is completed, use FFmpeg's av_interleaved_write_frame function to write the encoded data to the output file.
  8. Close the input and output stream
    After the video stream traversal is completed, use FFmpeg's av_write_trailer function to complete the video encapsulation. Finally, close the input and output streams and release resources.

Specific code examples:

package main

// 导入FFmpeg相关的头文件
/*
#cgo LDFLAGS: -lavformat -lavcodec -lavutil
#include <libavformat/avformat.h>
#include <libavcodec/avcodec.h>
*/
import "C"

import (
    "fmt"
)

func main() {
    // 输入文件名和输出文件名
    inputFileName := "input.mp4"
    outputFileName := "output.mp4"

    // 打开输入文件流
    var inputFormatCtx *C.AVFormatContext
    if C.avformat_open_input(&inputFormatCtx, C.CString(inputFileName), nil, nil) != 0 {
        fmt.Printf("Failed to open input file
")
        return
    }

    // 查找视频流信息
    if C.avformat_find_stream_info(inputFormatCtx, nil) < 0 {
        fmt.Printf("Failed to find stream information
")
        return
    }

    // 打开输出文件流
    var outputFormatCtx *C.AVFormatContext
    C.avformat_alloc_output_context2(&outputFormatCtx, nil, nil, C.CString(outputFileName))
    if outputFormatCtx == nil {
        fmt.Printf("Failed to allocate output format context
")
        return
    }

    // 复制视频流信息到输出流
    for i := C.uint(0); i < inputFormatCtx.nb_streams; i++ {
        stream := inputFormatCtx.streams[i]
        outputStream := C.avformat_new_stream(outputFormatCtx, stream.codec.codec)
        if outputStream == nil {
            fmt.Printf("Failed to allocate output stream
")
            return
        }

        // 复制流的参数
        if C.avcodec_parameters_copy(outputStream.codecpar, stream.codecpar) < 0 {
            fmt.Printf("Failed to copy codec parameters
")
            return
        }
    }

    // 打开输出文件
    if C.avio_open(&outputFormatCtx.pb, C.CString(outputFileName), C.AVIO_FLAG_WRITE) < 0 {
        fmt.Printf("Failed to open output file
")
        return
    }

    // 写入文件头部
    if C.avformat_write_header(outputFormatCtx, nil) < 0 {
        fmt.Printf("Failed to write header
")
        return
    }

    // 读取视频流数据并进行编码处理
    packet := C.AVPacket{}
    for C.av_read_frame(inputFormatCtx, &packet) == 0 {
        stream := inputFormatCtx.streams[packet.stream_index]
        outStream := outputFormatCtx.streams[packet.stream_index]

        // 编码帧数据
        if C.avcodec_send_packet(stream.codec, &packet) < 0 || C.avcodec_receive_packet(stream.codec, &packet) < 0 {
            fmt.Printf("Error while encoding
")
            return
        }

        packet.stream_index = outStream.index
        packet.pts = C.AV_NOPTS_VALUE
        packet.dts = C.AV_NOPTS_VALUE

        // 封装编码后的数据
        if C.av_interleaved_write_frame(outputFormatCtx, &packet) < 0 {
            fmt.Printf("Error while writing frame
")
            return
        }

        C.av_packet_unref(&packet)
    }

    // 结束封装
    C.av_write_trailer(outputFormatCtx)

    // 关闭输入输出流
    C.avformat_close_input(&inputFormatCtx)
    if outputFormatCtx != nil && outputFormatCtx.pb != nil {
        C.avio_close(outputFormatCtx.pb)
    }
    C.avformat_free_context(outputFormatCtx)

    fmt.Printf("Done
")
}

Summary:
By using Golang and FFmpeg, we can easily achieve transcoding and encapsulation of real-time video streams. This article gives specific code examples and outlines the implementation steps. However, in actual projects, more details may need to be considered, such as exception handling, concurrency processing, etc. I hope this article can be helpful to beginners of real-time video streaming transcoding and encapsulation technology, and I also hope it can provide everyone with a learning direction and ideas.

The above is the detailed content of Golang and FFmpeg: Technology for real-time video streaming transcoding and encapsulation. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
How to do the security settings of LibOffice on DebianHow to do the security settings of LibOffice on DebianMay 16, 2025 pm 01:24 PM

Ensuring overall security on Debian systems is crucial to protecting the running environment of applications such as LibOffice. Here are some general recommendations for improving system security: System updates regularly update the system to patch known security vulnerabilities. Debian12.10 released security updates that fixed a large number of security vulnerabilities, including some critical software packages. User permission management avoids the use of root users for daily operations to reduce potential security risks. It is recommended to create a normal user and join the sudo group to limit direct access to the system. The SSH service security configuration uses SSH key pairs to authenticate, disable root remote login, and restrict login with empty passwords. These measures can enhance the security of SSH services and prevent

How to configure Rust compilation options on DebianHow to configure Rust compilation options on DebianMay 16, 2025 pm 01:21 PM

Adjusting Rust compilation options on Debian system can be achieved through various ways. The following is a detailed description of several methods: Use the rustup tool to configure and install rustup: If you have not installed rustup yet, you can use the following command to install: curl--proto'=https'--tlsv1.2-sSfhttps://sh.rustup.rs|sh Follow the prompts to complete the installation process. Set compilation options: rustup can be used to configure compilation options for different toolchains and targets. You can set compilation options for a specific project using the rustupoverride command. For example, if you want to set a specific Rust version for a project

How to manage Kubernetes nodes on DebianHow to manage Kubernetes nodes on DebianMay 16, 2025 pm 01:18 PM

Managing Kubernetes (K8S) nodes on a Debian system usually involves the following key steps: 1. Installing and configuring Kubernetes components preparation: Make sure that all nodes (including master nodes and worker nodes) have the Debian operating system installed and meet the basic requirements for installing a Kubernetes cluster, such as sufficient CPU, memory and disk space. Disable swap partition: In order to ensure that kubelet can run smoothly, it is recommended to disable swap partition. Set firewall rules: allow necessary ports, such as ports used by kubelet, kube-apiserver, kube-scheduler, etc. Install container

Golang's security settings on DebianGolang's security settings on DebianMay 16, 2025 pm 01:15 PM

When setting up a Golang environment on Debian, it is crucial to ensure system security. Here are some key security setup steps and suggestions to help you build a secure Golang development environment: Security setup steps System update: Make sure your system is up to date before installing Golang. Update the system package list and installed packages with the following command: sudoaptupdatesudoaptupgrade-y Firewall Configuration: Install and configure a firewall (such as iptables) to limit access to the system. Only necessary ports (such as HTTP, HTTPS, and SSH) are allowed. sudoaptininstalliptablessud

How to optimize the performance of Kubernetes deployment on DebianHow to optimize the performance of Kubernetes deployment on DebianMay 16, 2025 pm 01:12 PM

Optimizing and deploying Kubernetes cluster performance on Debian is a complex task involving multiple aspects. Here are some key optimization strategies and suggestions: Hardware resource optimization CPU: Ensure that sufficient CPU resources are allocated to Kubernetes nodes and pods. Memory: Increases the memory capacity of the node, especially for memory-intensive applications. Storage: Use high-performance SSD storage and avoid using network file systems (such as NFS) as they may introduce latency. Kernel parameter optimization edit /etc/sysctl.conf file, add or modify the following parameters: net.core.somaxconn: 65535net.ipv4.tcp_max_syn

How to schedule tasks in Debian by Python scriptsHow to schedule tasks in Debian by Python scriptsMay 16, 2025 pm 01:09 PM

In the Debian system, you can use cron to arrange timed tasks and realize the automated execution of Python scripts. First, start the terminal. Edit the crontab file of the current user by entering the following command: crontab-e If you need to edit the crontab file of other users with root permissions, please use: sudocrontab-uusername-e to replace username with the username you want to edit. In the crontab file, you can add timed tasks in the format as follows: *****/path/to/your/python-script.py These five asterisks represent minutes (0-59) and small

How to configure Golang network parameters in DebianHow to configure Golang network parameters in DebianMay 16, 2025 pm 01:06 PM

Adjusting Golang's network parameters in Debian system can be achieved in many ways. The following are several feasible methods: Method 1: Temporarily set environment variables by setting environment variables: Enter the following command in the terminal to temporarily set environment variables, and this setting is only valid in the current session. exportGODEBUG="gctrace=1netdns=go" where gctrace=1 will activate garbage collection tracking, and netdns=go will make Go use its own DNS resolver instead of the system default. Set environment variables permanently: add the above command to your shell configuration file, such as ~/.bashrc or ~/.profile

What are the shortcut keys for LibOffice on DebianWhat are the shortcut keys for LibOffice on DebianMay 16, 2025 pm 01:03 PM

The shortcut keys for customizing LibOffice on Debian systems can be adjusted through system settings. Here are some commonly used steps and methods to set LibOffice shortcut keys: Basic steps to set LibOffice shortcut keys Open system settings: In the Debian system, click the menu in the upper left corner (usually a gear icon), and select "System Settings". Select a device: In the system settings window, select "Device". Select a keyboard: On the Device Settings page, select Keyboard. Find the command to the corresponding tool: In the keyboard settings page, scroll down to the bottom to see the "Shortcut Keys" option. Clicking it will bring a window to a pop-up. Find the corresponding LibOffice worker in the pop-up window

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version

SublimeText3 English version

SublimeText3 English version

Recommended: Win version, supports code prompts!

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.