


Python for NLP: How to automatically organize and classify text in PDF files?
Python for NLP: How to automatically organize and classify text in PDF files?
Abstract:
With the development of the Internet and the explosive growth of information, we are faced with a large amount of text data every day. In this era, automatically organizing and classifying text has become increasingly important. This article will introduce how to use Python and its powerful natural language processing (NLP) functions to automatically extract text from PDF files, organize and classify it.
1. Install the necessary Python libraries
Before we begin, we need to ensure that the following Python libraries have been installed:
- pdfplumber: used to extract from PDFs text.
- nltk: used for natural language processing.
- sklearn: used for text classification.
You can use the pip command to install. For example: pip install pdfplumber
2. Extract text from PDF files
First, we need to use the pdfplumber library to extract text from PDF files.
import pdfplumber def extract_text_from_pdf(file_path): with pdfplumber.open(file_path) as pdf: text = "" for page in pdf.pages: text += page.extract_text() return text
In the above code, we define a function named extract_text_from_pdf to extract text from a given PDF file. The function accepts a file path as a parameter and opens the PDF file using the pdfplumber library, then iterates through each page through a loop and extracts the text using the extract_text() method.
3. Text preprocessing
Before text classification, we usually need to preprocess the text. This includes steps such as stop word removal, tokenization, stemming, etc. In this article, we will use the nltk library to accomplish these tasks.
import nltk from nltk.corpus import stopwords from nltk.tokenize import word_tokenize from nltk.stem import SnowballStemmer def preprocess_text(text): # 将文本转换为小写 text = text.lower() # 分词 tokens = word_tokenize(text) # 移除停用词 stop_words = set(stopwords.words("english")) filtered_tokens = [word for word in tokens if word not in stop_words] # 词干提取 stemmer = SnowballStemmer("english") stemmed_tokens = [stemmer.stem(word) for word in filtered_tokens] # 返回预处理后的文本 return " ".join(stemmed_tokens)
In the above code, we first convert the text to lowercase, and then use the word_tokenize() method to segment the text into words. Next, we use the stopwords library to remove stop words and SnowballStemmer for stemming. Finally, we return the preprocessed text.
4. Text Classification
Now that we have extracted the text from the PDF file and preprocessed it, we can use machine learning algorithms to classify the text. In this article, we will use the Naive Bayes algorithm as the classifier.
from sklearn.feature_extraction.text import CountVectorizer from sklearn.naive_bayes import MultinomialNB def classify_text(text): # 加载已训练的朴素贝叶斯分类器模型 model = joblib.load("classifier_model.pkl") # 加载已训练的词袋模型 vectorizer = joblib.load("vectorizer_model.pkl") # 预处理文本 preprocessed_text = preprocess_text(text) # 将文本转换为特征向量 features = vectorizer.transform([preprocessed_text]) # 使用分类器预测文本类别 predicted_category = model.predict(features) # 返回预测结果 return predicted_category[0]
In the above code, we first use the joblib library to load the trained naive Bayes classifier model and bag-of-words model. We then convert the preprocessed text into feature vectors and then use a classifier to classify the text. Finally, we return the predicted classification result of the text.
5. Integrate the code and automatically process PDF files
Now, we can integrate the above code and automatically process PDF files, extract text and classify it.
import os def process_pdf_files(folder_path): for filename in os.listdir(folder_path): if filename.endswith(".pdf"): file_path = os.path.join(folder_path, filename) # 提取文本 text = extract_text_from_pdf(file_path) # 分类文本 category = classify_text(text) # 打印文件名和分类结果 print("File:", filename) print("Category:", category) print("--------------------------------------") # 指定待处理的PDF文件所在文件夹 folder_path = "pdf_folder" # 处理PDF文件 process_pdf_files(folder_path)
In the above code, we first define a function named process_pdf_files to automatically process files in the PDF folder. Then, use the listdir() method of the os library to iterate through each file in the folder, extract the text of the PDF file, and classify it. Finally, we print the file name and classification results.
Conclusion
Using Python and NLP functions, we can easily extract text from PDF files and organize and classify it. This article provides a sample code to help readers understand how to automatically process text in PDF files, but the specific application scenarios may be different and need to be adjusted and modified according to the actual situation.
References:
- pdfplumber official document: https://github.com/jsvine/pdfplumber
- nltk official document: https://www.nltk .org/
- sklearn official documentation: https://scikit-learn.org/
The above is the detailed content of Python for NLP: How to automatically organize and classify text in PDF files?. For more information, please follow other related articles on the PHP Chinese website!

To maximize the efficiency of learning Python in a limited time, you can use Python's datetime, time, and schedule modules. 1. The datetime module is used to record and plan learning time. 2. The time module helps to set study and rest time. 3. The schedule module automatically arranges weekly learning tasks.

Python excels in gaming and GUI development. 1) Game development uses Pygame, providing drawing, audio and other functions, which are suitable for creating 2D games. 2) GUI development can choose Tkinter or PyQt. Tkinter is simple and easy to use, PyQt has rich functions and is suitable for professional development.

Python is suitable for data science, web development and automation tasks, while C is suitable for system programming, game development and embedded systems. Python is known for its simplicity and powerful ecosystem, while C is known for its high performance and underlying control capabilities.

You can learn basic programming concepts and skills of Python within 2 hours. 1. Learn variables and data types, 2. Master control flow (conditional statements and loops), 3. Understand the definition and use of functions, 4. Quickly get started with Python programming through simple examples and code snippets.

Python is widely used in the fields of web development, data science, machine learning, automation and scripting. 1) In web development, Django and Flask frameworks simplify the development process. 2) In the fields of data science and machine learning, NumPy, Pandas, Scikit-learn and TensorFlow libraries provide strong support. 3) In terms of automation and scripting, Python is suitable for tasks such as automated testing and system management.

You can learn the basics of Python within two hours. 1. Learn variables and data types, 2. Master control structures such as if statements and loops, 3. Understand the definition and use of functions. These will help you start writing simple Python programs.

How to teach computer novice programming basics within 10 hours? If you only have 10 hours to teach computer novice some programming knowledge, what would you choose to teach...

How to avoid being detected when using FiddlerEverywhere for man-in-the-middle readings When you use FiddlerEverywhere...


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment