


How to use React and Elasticsearch to achieve efficient full-text retrieval
Introduction:
With the advent of the era of information explosion, full-text retrieval has become an efficient way to obtain and A way to manage large amounts of information. React and Elasticsearch are both very popular technologies at the moment, and their combination can help us achieve efficient full-text search functions. This article will introduce in detail how to use React and Elasticsearch to implement full-text retrieval, and provide specific code examples.
- Install and configure Elasticsearch
First, we need to install and configure Elasticsearch. You can go to the Elasticsearch official website (https://www.elastic.co/cn/downloads/elasticsearch) to download the installation package suitable for your operating system, and install and configure it according to the official documentation. Once completed, start the Elasticsearch service.
- Create React Project
Before we start, we need to create a React project. Open the command line and execute the following command:
npx create-react-app search-demo cd search-demo npm start
At this point, a new React project has been created and started.
- Install and configure the Elasticsearch plug-in
In the root directory of the React project, execute the following command to install the elasticsearch plug-in:
npm install @elastic/elasticsearch
Then create it in the src directory An elasticsearch.js file and add the following code:
import { Client } from '@elastic/elasticsearch'; const client = new Client({ node: 'http://localhost:9200' }); export default client;
In this way we have completed the installation and configuration of Elasticsearch.
- Create search component
Create the Search.js file in the src directory and add the following code:
import React, { useState } from 'react'; import client from './elasticsearch'; function Search() { const [searchTerm, setSearchTerm] = useState(''); const [searchResults, setSearchResults] = useState([]); const handleSearch = async () => { const response = await client.search({ index: 'your_index_name', body: { query: { match: { content: searchTerm } } } }); const hits = response.body.hits.hits; setSearchResults(hits); }; return ( <div> <input type="text" value={searchTerm} onChange={e => setSearchTerm(e.target.value)} /> <button onClick={handleSearch}>搜索</button> {searchResults.map(result => ( <div key={result._id}>{result._source.content}</div> ))} </div> ); } export default Search;
In the above code, we first The elasticsearch module was introduced and a Search component was created. This component contains an input box and a search button, as well as divs used to display search results. In the handleSearch function, we obtain the search results by calling the elasticsearch search interface and update the searchResults status.
- Use the search component in App.js
Open the App.js file and add the following code to it:
import React from 'react'; import Search from './Search'; function App() { return ( <div> <Search /> </div> ); } export default App;
So we are The Search component is introduced in the App component.
- Run the project
Now, you can run the React project through the command line.
npm start
Open the browser and visit http://localhost:3000, you will see a page containing a search input box. Enter keywords in the input box and click the search button to get the search results.
Conclusion:
Through the above steps, we successfully used React and Elasticsearch to implement efficient full-text retrieval function. React provides a platform for quickly building UI, while Elasticsearch provides a powerful full-text search engine. Their combination allows us to easily develop powerful full-text search applications. I hope this article can be helpful to readers and can play a greater role in practice.
Reference materials:
- React official documentation: https://reactjs.org/
- Elasticsearch official documentation: https://www.elastic.co/ guide/index.html
The above is the detailed content of How to use React and Elasticsearch to achieve efficient full-text retrieval. For more information, please follow other related articles on the PHP Chinese website!

在react中,canvas用于绘制各种图表、动画等;可以利用“react-konva”插件使用canvas,该插件是一个canvas第三方库,用于使用React操作canvas绘制复杂的画布图形,并提供了元素的事件机制和拖放操作的支持。

在react中,antd是基于Ant Design的React UI组件库,主要用于研发企业级中后台产品;dva是一个基于redux和“redux-saga”的数据流方案,内置了“react-router”和fetch,可理解为应用框架。

React不是双向数据流,而是单向数据流。单向数据流是指数据在某个节点被改动后,只会影响一个方向上的其他节点;React中的表现就是数据主要通过props从父节点传递到子节点,若父级的某个props改变了,React会重渲染所有子节点。

因为在react中需要利用到webpack,而webpack依赖nodejs;webpack是一个模块打包机,在执行打包压缩的时候是依赖nodejs的,没有nodejs就不能使用webpack,所以react需要使用nodejs。

在react中,forceupdate()用于强制使组件跳过shouldComponentUpdate(),直接调用render(),可以触发组件的正常生命周期方法,语法为“component.forceUpdate(callback)”。

react是组件化开发;组件化是React的核心思想,可以开发出一个个独立可复用的小组件来构造应用,任何的应用都会被抽象成一颗组件树,组件化开发也就是将一个页面拆分成一个个小的功能模块,每个功能完成自己这部分独立功能。

react与vue的虚拟dom没有区别;react和vue的虚拟dom都是用js对象来模拟真实DOM,用虚拟DOM的diff来最小化更新真实DOM,可以减小不必要的性能损耗,按颗粒度分为不同的类型比较同层级dom节点,进行增、删、移的操作。

react和reactdom的区别是:ReactDom只做和浏览器或DOM相关的操作,例如“ReactDOM.findDOMNode()”操作;而react负责除浏览器和DOM以外的相关操作,ReactDom是React的一部分。


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

Dreamweaver Mac version
Visual web development tools

Notepad++7.3.1
Easy-to-use and free code editor

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft
