


How to use Java to develop a full-text retrieval application based on Elasticsearch
Full-text retrieval is a very important technology in today's information age. It can quickly and accurately retrieve data from Search a large amount of text data for keywords or related information that users need. As an open source distributed search engine, Elasticsearch has been widely used for its efficient full-text retrieval capabilities, real-time data analysis and scalability. This article will introduce how to use Java to develop a full-text search application based on Elasticsearch, and provide specific code examples.
- Preparation work
Before starting development, we need to prepare the following work: - Install the Java development environment (JDK)
- Install the Elasticsearch server, and Start the service
- Import the Elasticsearch Java client library, for example, use Maven to import the following dependencies:
<dependencies> <dependency> <groupId>org.elasticsearch</groupId> <artifactId>elasticsearch</artifactId> <version>7.10.0</version> </dependency> </dependencies>
- Create the Elasticsearch client
First, we need to create a Client used to connect to the Elasticsearch server. You can create a client instance using the following code:
import org.elasticsearch.client.RestClient; import org.elasticsearch.client.RestClientBuilder; import org.elasticsearch.client.RestHighLevelClient; public class ElasticsearchClient { public static RestHighLevelClient createClient() { // 配置Elasticsearch服务器地址 RestClientBuilder builder = RestClient.builder(new HttpHost("localhost", 9200, "http")); // 创建高级客户端实例 RestHighLevelClient client = new RestHighLevelClient(builder); return client; } }
- Create Index
Next, we need to create an index (Index) to store our document data. Indexes are similar to tables in a database, and we can store different types of document data in different indexes. You can use the following code to create an index:
import org.elasticsearch.action.admin.indices.create.CreateIndexRequest; import org.elasticsearch.action.admin.indices.create.CreateIndexResponse; import org.elasticsearch.client.RequestOptions; import org.elasticsearch.client.RestHighLevelClient; import org.elasticsearch.common.xcontent.XContentType; import org.elasticsearch.common.xcontent.XContentBuilder; import org.elasticsearch.common.xcontent.XContentFactory; import org.elasticsearch.common.xcontent.XContentFactory.*; public class IndexCreator { public static void createIndex(String indexName) { try { RestHighLevelClient client = ElasticsearchClient.createClient(); // 创建索引请求 CreateIndexRequest request = new CreateIndexRequest(indexName); // 设置索引的映射规则 XContentBuilder mappingBuilder = XContentFactory.jsonBuilder(); mappingBuilder.startObject(); mappingBuilder.startObject("properties"); mappingBuilder.startObject("title"); mappingBuilder.field("type", "text"); mappingBuilder.endObject(); mappingBuilder.startObject("content"); mappingBuilder.field("type", "text"); mappingBuilder.endObject(); mappingBuilder.endObject(); mappingBuilder.endObject(); request.mapping(mappingBuilder); // 执行创建索引请求 CreateIndexResponse response = client.indices().create(request, RequestOptions.DEFAULT); // 处理响应结果 if (response.isAcknowledged()) { System.out.println("索引创建成功:" + indexName); } else { System.out.println("索引创建失败:" + indexName); } // 关闭客户端连接 client.close(); } catch (Exception e) { e.printStackTrace(); } } }
- Index document
After having the index, we can store the document data into the index. A document is similar to a record in a database. We can store multiple documents under the same index. You can use the following code to store document data in the index:
import org.elasticsearch.action.index.IndexRequest; import org.elasticsearch.action.index.IndexResponse; import org.elasticsearch.client.RequestOptions; import org.elasticsearch.client.RestHighLevelClient; import org.elasticsearch.common.xcontent.XContentType; public class DocumentIndexer { public static void indexDocument(String indexName, String documentId, String title, String content) { try { RestHighLevelClient client = ElasticsearchClient.createClient(); // 创建文档索引请求 IndexRequest request = new IndexRequest(indexName); request.id(documentId); request.source("title", title); request.source("content", content); // 执行文档索引请求 IndexResponse response = client.index(request, RequestOptions.DEFAULT); // 处理响应结果 if (response.status().getStatus() == 201) { System.out.println("文档索引成功:" + documentId); } else { System.out.println("文档索引失败:" + documentId); } // 关闭客户端连接 client.close(); } catch (Exception e) { e.printStackTrace(); } } }
- Search for documents
With the document index, we can search for documents containing keywords through full-text retrieval. . You can use the following code to perform document search:
import org.elasticsearch.action.search.SearchRequest; import org.elasticsearch.action.search.SearchResponse; import org.elasticsearch.client.RequestOptions; import org.elasticsearch.client.RestHighLevelClient; import org.elasticsearch.index.query.QueryBuilders; import org.elasticsearch.index.query.QueryBuilders.*; import org.elasticsearch.search.builder.SearchSourceBuilder; public class DocumentSearcher { public static void searchDocument(String indexName, String keyword) { try { RestHighLevelClient client = ElasticsearchClient.createClient(); // 创建搜索请求 SearchRequest request = new SearchRequest(indexName); SearchSourceBuilder sourceBuilder = new SearchSourceBuilder(); sourceBuilder.query(QueryBuilders.matchQuery("content", keyword)); request.source(sourceBuilder); // 执行搜索请求 SearchResponse response = client.search(request, RequestOptions.DEFAULT); // 处理响应结果 if (response.getHits().getTotalHits().value > 0) { System.out.println("搜索结果:"); for (SearchHit hit : response.getHits().getHits()) { System.out.println(hit.getSourceAsString()); } } else { System.out.println("未找到相关文档"); } // 关闭客户端连接 client.close(); } catch (Exception e) { e.printStackTrace(); } } }
Using the above code example, we can complete the development of a full-text retrieval application based on Elasticsearch. By creating an index, indexing documents, and searching documents, we can achieve efficient and accurate full-text retrieval. Of course, in addition to the basic functions shown above, Elasticsearch also supports various advanced queries, aggregate analysis, distributed deployment and other features, and can be further developed and expanded according to specific needs. I hope this article is helpful to you, and I wish you greater success in the field of full-text retrieval!
The above is the detailed content of How to use Java to develop a full-text search application based on Elasticsearch. For more information, please follow other related articles on the PHP Chinese website!

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于结构化数据处理开源库SPL的相关问题,下面就一起来看一下java下理想的结构化数据处理类库,希望对大家有帮助。

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于PriorityQueue优先级队列的相关知识,Java集合框架中提供了PriorityQueue和PriorityBlockingQueue两种类型的优先级队列,PriorityQueue是线程不安全的,PriorityBlockingQueue是线程安全的,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于java锁的相关问题,包括了独占锁、悲观锁、乐观锁、共享锁等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于多线程的相关问题,包括了线程安装、线程加锁与线程不安全的原因、线程安全的标准类等等内容,希望对大家有帮助。

本篇文章给大家带来了关于Java的相关知识,其中主要介绍了关于关键字中this和super的相关问题,以及他们的一些区别,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于枚举的相关问题,包括了枚举的基本操作、集合类对枚举的支持等等内容,下面一起来看一下,希望对大家有帮助。

封装是一种信息隐藏技术,是指一种将抽象性函式接口的实现细节部分包装、隐藏起来的方法;封装可以被认为是一个保护屏障,防止指定类的代码和数据被外部类定义的代码随机访问。封装可以通过关键字private,protected和public实现。

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于设计模式的相关问题,主要将装饰器模式的相关内容,指在不改变现有对象结构的情况下,动态地给该对象增加一些职责的模式,希望对大家有帮助。


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

SublimeText3 English version
Recommended: Win version, supports code prompts!

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

Zend Studio 13.0.1
Powerful PHP integrated development environment

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),
