


Java development: How to use Apache Kafka Streams for real-time stream processing and computing
Java development: How to use Apache Kafka Streams for real-time stream processing and computing
Introduction:
With the rise of big data and real-time computing, Apache Kafka Streams As a stream processing engine, it is being used by more and more developers. It provides a simple yet powerful way to handle real-time streaming data and perform complex stream processing and calculations. This article will introduce how to use Apache Kafka Streams for real-time stream processing and computing, including configuring the environment, writing code, and sample demonstrations.
1. Preparation:
- Install and configure Apache Kafka: You need to download and install Apache Kafka, and start the Apache Kafka cluster. For detailed installation and configuration, please refer to the official Apache Kafka documentation.
- Introduce dependencies: Introduce Kafka Streams-related dependencies into the Java project. For example, using Maven, you can add the following dependencies in the project's pom.xml file:
<dependency> <groupId>org.apache.kafka</groupId> <artifactId>kafka-streams</artifactId> <version>2.8.1</version> </dependency>
2. Write code:
- Create a Kafka Streams application:
First, you need to create a Kafka Streams application and configure the connection information of the Kafka cluster. The following is a simple sample code:
import org.apache.kafka.streams.KafkaStreams; import org.apache.kafka.streams.StreamsBuilder; import org.apache.kafka.streams.StreamsConfig; import org.apache.kafka.streams.Topology; import java.util.Properties; public class KafkaStreamsApp { public static void main(String[] args) { Properties props = new Properties(); props.put(StreamsConfig.APPLICATION_ID_CONFIG, "my-streams-app"); props.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092"); StreamsBuilder builder = new StreamsBuilder(); // 在这里添加流处理和计算逻辑 Topology topology = builder.build(); KafkaStreams streams = new KafkaStreams(topology, props); streams.start(); // 添加Shutdown Hook,确保应用程序在关闭时能够优雅地停止 Runtime.getRuntime().addShutdownHook(new Thread(streams::close)); } }
- Add stream processing and calculation logic:
After creating a Kafka Streams application, you need to add specific stream processing and calculation logic. Taking a simple example, we assume that we receive a string message from a Kafka topic named "input-topic", perform a length calculation on the message, and then send the result to a Kafka topic named "output-topic" . The following is a sample code:
import org.apache.kafka.common.serialization.Serdes; import org.apache.kafka.streams.kstream.KStream; import org.apache.kafka.streams.kstream.KTable; import java.util.Arrays; public class KafkaStreamsApp { // 省略其他代码... public static void main(String[] args) { // 省略其他代码... KStream<String, String> inputStream = builder.stream("input-topic"); KTable<String, Long> wordCounts = inputStream .flatMapValues(value -> Arrays.asList(value.toLowerCase().split("\W+"))) .groupBy((key, word) -> word) .count(); wordCounts.toStream().to("output-topic"); // 省略其他代码... } }
In the above sample code, a KStream object is first created from the input topic, and then the flatMapValues operation is used to split each message into words and perform statistical counting. Finally, the results are sent to the output topic.
3. Example Demonstration:
In order to verify our real-time stream processing and computing applications, you can use the Kafka command line tool to send messages and view results. The following are the steps for an example demonstration:
- Create input and output topics:
Execute the following commands on the command line to create Kafka topics named "input-topic" and "output-topic" :
bin/kafka-topics.sh --create --topic input-topic --bootstrap-server localhost:9092 --partitions 1 --replication-factor 1 bin/kafka-topics.sh --create --topic output-topic --bootstrap-server localhost:9092 --partitions 1 --replication-factor 1
- Send a message to the input topic:
Execute the following command in the command line to send some messages to "input-topic":
bin/kafka-console-producer.sh --topic input-topic --bootstrap-server localhost:9092 >hello world >apache kafka streams >real-time processing >``` 3. 查看结果: 在命令行中执行以下命令,从"output-topic"中消费结果消息:
bin/kafka-console-consumer.sh --topic output-topic --from-beginning --bootstrap-server localhost:9092
可以看到,输出的结果是单词及其对应的计数值:
real-time: 1
processing: 1
apache: 1
kafka: 1
streams: 1
hello: 2
world: 1
结论: 通过上述示例,我们了解了如何使用Apache Kafka Streams进行实时流处理和计算。可以根据实际需求,编写更复杂的流处理和计算逻辑,并通过Kafka命令行工具来验证和查看结果。希望本文对于Java开发人员在实时流处理和计算领域有所帮助。 参考文档: 1. Apache Kafka官方文档:https://kafka.apache.org/documentation/ 2. Kafka Streams官方文档:https://kafka.apache.org/documentation/streams/
The above is the detailed content of Java development: How to use Apache Kafka Streams for real-time stream processing and computing. For more information, please follow other related articles on the PHP Chinese website!

Start Spring using IntelliJIDEAUltimate version...

When using MyBatis-Plus or other ORM frameworks for database operations, it is often necessary to construct query conditions based on the attribute name of the entity class. If you manually every time...

Java...

How does the Redis caching solution realize the requirements of product ranking list? During the development process, we often need to deal with the requirements of rankings, such as displaying a...

Conversion of Java Objects and Arrays: In-depth discussion of the risks and correct methods of cast type conversion Many Java beginners will encounter the conversion of an object into an array...

Solutions to convert names to numbers to implement sorting In many application scenarios, users may need to sort in groups, especially in one...

Detailed explanation of the design of SKU and SPU tables on e-commerce platforms This article will discuss the database design issues of SKU and SPU in e-commerce platforms, especially how to deal with user-defined sales...

How to set the SpringBoot project default run configuration list in Idea using IntelliJ...


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft