search
HomeBackend DevelopmentC++Prove that the dominant set of a graph is NP-complete
Prove that the dominant set of a graph is NP-completeSep 19, 2023 pm 02:09 PM
picturedominant setnp-complete

A dominant set of a graph is an NP-complete problem, which is a subset of vertices such that every vertex or adjacent vertex in the subset is in the subset. The full form of NP is "non-deterministic polynomial" which will check the problem in polynomial time, meaning we can check in polynomial time whether the solution is correct. Polynomial time has the best performance for codes like linear search time complexity – n, binary search – logn, merge sort – n(log)n etc. Complexity. NP-complete graphs provide a good solution in reasonable time. This application is used in areas such as network control, topology creation in computer laboratories, social networks and distributed computing.

Let us understand and check if a node has the dominant set of a NP complete graph.

A vertex is said to dominate itself and each of its neighbors.

Prove that the dominant set of a graph is NP-complete

Prove that the dominant set of a graph is NP-complete

We see two graphs showing that the gray color of the nodes in the graph is dominant in nature.

G = V, E

parameter

G is considered a graph, V is considered a vertex, and E is considered an edge.

Given a graph G(V, E) and an integer k, determine whether the graph has a dominating set of size k. An input specified as a problem is considered an instance of the problem. The graph G(V, E) and the integer k serve as examples of the dominating set problem, which asks whether the graph G can have a dominating set in G. Since the definition of an NP-complete problem is a problem that is both NP and NP-hard, proving that a problem is NP-complete has two components −

Dominator sets in NP-complete problems

If there is an NP problem Y that can be reduced to X in polynomial time, then X is an NP-complete problem. NP-complete problems are just as hard as NP problems. A problem is NP-Complete if it is part both an NP problem and an NP-Hard problem. Nondeterministic Turing machines can solve NP-complete problems in polynomial time. When a problem is np-complete, it has both np and np-hard combinations.

This means that problems with np solutions can be verified in polynomial time.

Real examples that are NP-complete have dominating sets, such as -

  • Decision-making problem.

  • The graphics are consistent.

Non-deterministic search algorithm

NP_search( key ) {
   arraylist[100];
   i = array_check(key);
   if(list[i]==key) {
      searching found at index i.
   } else {
      searching found at index i.
   }
}

Therefore, the total time complexity of this algorithm is O(1), but we do not know which search technique is more useful for solving this problem, which is called a non-deterministic algorithm.

Dominator sets in NP-hard problems

If there is an NP-complete problem Y that can be reduced to problem X in polynomial time, then problem X is NP-hard. NP-hard problems are as hard as NP-complete problems. An NP-hard problem does not necessarily belong to the NP category.

If every NP problem can be solved in polynomial time, it is called NP-Hard. Many times, a specific problem is used to solve and reduce other problems.

Real examples of NP-hard have dominating sets such as -

  • Hamiltonian circuit

  • Optimization

  • Shortest route

in conclusion

We learned the concept that the dominant set of a graph is NP-complete. We see how discrete mathematics is an important aspect connecting these problems, such as Hamilton cycles, shortest paths, etc. In programming terms, NP-complete problems are a class of problems that are difficult to find but whose solutions can be directly verified in polynomial time.

The above is the detailed content of Prove that the dominant set of a graph is NP-complete. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:tutorialspoint. If there is any infringement, please contact admin@php.cn delete
如何使用C++中的Prim算法如何使用C++中的Prim算法Sep 20, 2023 pm 12:31 PM

标题:C++中Prim算法的使用及代码示例引言:Prim算法是一种常用的最小生成树算法,主要用于解决图论中的最小生成树问题。在C++中,通过合理的数据结构和算法实现,可以有效地使用Prim算法。本文将介绍如何在C++中使用Prim算法,并提供具体的代码示例。一、Prim算法简介Prim算法是一种贪心算法,它从一个顶点开始,逐步扩展最小生成树的顶点集合,直到包

如何使用java实现图的拓扑排序算法如何使用java实现图的拓扑排序算法Sep 19, 2023 pm 03:19 PM

如何使用Java实现图的拓扑排序算法引言:图是一种非常常见的数据结构,在计算机科学领域有着广泛的应用。拓扑排序算法是图论中的一种经典算法,它可以对有向无环图(DAG)进行排序,从而确定图中各个节点之间的依赖关系。本文将介绍如何使用Java编程语言来实现图的拓扑排序算法,并附带具体的Java代码示例。一、定义图的数据结构在实现拓扑排序算法之前,我们首先需要定义

如何使用java实现图的哈密顿回路算法如何使用java实现图的哈密顿回路算法Sep 21, 2023 am 09:03 AM

如何使用Java实现图的哈密顿回路算法哈密顿回路是一种图论中的计算问题,即在给定的图中找到一条包含所有顶点的闭合路径。在这篇文章里,我们将详细介绍如何使用Java编程语言实现哈密顿回路算法,并提供相应的代码示例。图表示首先,我们需要使用适当的数据结构来表示图。在Java中,我们可以使用邻接矩阵或邻接链表来表示图。这里我们选择使用邻接矩阵来表示图。定义一个名为

深入探索Java中树和图的非线性数据结构应用和实现方法深入探索Java中树和图的非线性数据结构应用和实现方法Dec 26, 2023 am 10:22 AM

理解Java中的树和图:探索非线性数据结构的应用与实现引言在计算机科学中,数据结构是计算机中存储、组织和管理数据的方式。数据结构可以分为线性数据结构和非线性数据结构。树和图是非线性数据结构中最常用的两种类型。本文将重点介绍Java中树和图的概念、应用和实现,并给出具体的代码示例。树的概念与应用树是一种抽象数据类型,由节点和边组成的集合。树的每个节点包含一个数

PPT设置两幅图同时做动画效果的操作方法PPT设置两幅图同时做动画效果的操作方法Mar 26, 2024 pm 08:40 PM

1、双击打开测试文档。2、点击工作去创建第一个ppt文档后,点击菜单的插入--图片--来自文件。3、选择我们插入的文件,点击插入。4、同样方法再插入一个,拖动调整两幅图片到合适位置。5、同时选中两幅图片,点击右键--组合--组合,使得两幅图成为一体。6、选中合并后的图形,点击右键--自定义动画。7、点击添加效果,选择一种效果,点击确定,这时看PPT,就会发现两幅图片一起动了。

如何使用java实现图的欧拉回路算法如何使用java实现图的欧拉回路算法Sep 19, 2023 am 09:01 AM

如何使用Java实现图的欧拉回路算法?欧拉回路是一种经典的图论问题,其本质是寻找一条路径,能够经过图中每条边一次且只能一次,并且最终回到起始节点。本文将介绍如何使用Java语言来实现图的欧拉回路算法,并提供具体的代码示例。一、图的表示方式在实现欧拉回路算法之前,首先需要选择一种适合的图的表示方式。常见的表示方式有邻接矩阵和邻接表。在本文中,我们将使用邻接表来

使用C++找到图中的汇节点的数量使用C++找到图中的汇节点的数量Sep 01, 2023 pm 07:25 PM

在本文中,我们将描述解决图中汇节点数量的重要信息。在这个问题中,我们有一个有N个节点(1到N)和M个边的有向无环图。目标是找出给定图中有多少个汇节点。汇聚节点是不产生任何传出边的节点。这是一个简单的例子-Input:n=4,m=2Edges[]={{2,3},{4,3}}Output:2寻找解决方案的简单方法在这种方法中,我们将遍历图的边,将边所指向的集合中的不同元素推入其中,然后减去集合的大小存在的节点总数。示例#include<bits/stdc++.h>usingnamespa

证明图的主导集是NP-完全的证明图的主导集是NP-完全的Sep 19, 2023 pm 02:09 PM

图的一个主导集是NP完全问题,它是顶点的子集,使得子集中的每个顶点或相邻的顶点都在子集中。NP的完整形式是“非确定性多项式”,它将在多项式时间内检查问题,这意味着我们可以在多项式时间内检查解决方案是否正确。多项式时间对于像线性搜索的时间复杂度–n,二分搜索–logn,归并排序-n(log)n等代码具有最好的复杂性。NP完全图在合理的时间内提供了一个很好的解决方案。这个应用程序在网络控制、计算机实验室中的拓扑创建、社交网络和分布式计算等领域中使用。让我们理解并检查节点是否具有NP完全图的主导集。据

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

Repo: How To Revive Teammates
1 months agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
1 months agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

EditPlus Chinese cracked version

EditPlus Chinese cracked version

Small size, syntax highlighting, does not support code prompt function

MantisBT

MantisBT

Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool