search
HomeBackend DevelopmentC#.Net TutorialHow to implement the red-black tree algorithm in C#

How to implement the red-black tree algorithm in C#

How to implement the red-black tree algorithm in C# requires specific code examples

Introduction:
The red-black tree is a self-balancing binary search tree . It maintains the specific property such that for any valid red-black tree, the longest path is never more than twice the shortest path. This characteristic makes red-black trees have better performance in insertion, deletion and search operations. This article will introduce how to implement the red-black tree algorithm in C# and provide specific code examples.

Properties of red-black trees:
Red-black trees have the following 5 properties:

  1. Each node is either red or black.
  2. The root node is black.
  3. Each leaf node (NIL node, empty node) is black.
  4. If a node is red, both of its child nodes are black.
  5. For each node, the simple path from that node to all its descendant leaf nodes contains the same number of black nodes.

Implementation of red-black tree:
The following is a sample code to implement red-black tree in C#:

enum Color
{
    Red,
    Black
}

class Node
{
    public int key;
    public Node parent;
    public Node left;
    public Node right;
    public Color color;

    public Node(int key)
    {
        this.key = key;
        color = Color.Black;
    }
}

class RedBlackTree
{
    private Node root;

    private void Insert(Node newNode)
    {
        Node current = root;
        Node parent = null;

        while (current != null)
        {
            parent = current;

            if (newNode.key < current.key)
                current = current.left;
            else
                current = current.right;
        }

        newNode.parent = parent;

        if (parent == null)
            root = newNode;
        else if (newNode.key < parent.key)
            parent.left = newNode;
        else
            parent.right = newNode;

        newNode.color = Color.Red;

        FixAfterInsertion(newNode);
    }

    private void FixAfterInsertion(Node newNode)
    {
        while (newNode != root && newNode.parent.color == Color.Red)
        {
            if (newNode.parent == newNode.parent.parent.left)
            {
                Node uncle = newNode.parent.parent.right;

                if (uncle != null && uncle.color == Color.Red)
                {
                    newNode.parent.color = Color.Black;
                    uncle.color = Color.Black;
                    newNode.parent.parent.color = Color.Red;
                    newNode = newNode.parent.parent;
                }
                else
                {
                    if (newNode == newNode.parent.right)
                    {
                        newNode = newNode.parent;
                        RotateLeft(newNode);
                    }

                    newNode.parent.color = Color.Black;
                    newNode.parent.parent.color = Color.Red;
                    RotateRight(newNode.parent.parent);
                }
            }
            else
            {
                Node uncle = newNode.parent.parent.left;

                if (uncle != null && uncle.color == Color.Red)
                {
                    newNode.parent.color = Color.Black;
                    uncle.color = Color.Black;
                    newNode.parent.parent.color = Color.Red;
                    newNode = newNode.parent.parent;
                }
                else
                {
                    if (newNode == newNode.parent.left)
                    {
                        newNode = newNode.parent;
                        RotateRight(newNode);
                    }

                    newNode.parent.color = Color.Black;
                    newNode.parent.parent.color = Color.Red;
                    RotateLeft(newNode.parent.parent);
                }
            }
        }

        root.color = Color.Black;
    }

    private void RotateLeft(Node node)
    {
        Node right = node.right;
        node.right = right.left;

        if (right.left != null)
            right.left.parent = node;

        right.parent = node.parent;

        if (node.parent == null)
            root = right;
        else if (node == node.parent.left)
            node.parent.left = right;
        else
            node.parent.right = right;

        right.left = node;
        node.parent = right;
    }

    private void RotateRight(Node node)
    {
        Node left = node.left;
        node.left = left.right;

        if (left.right != null)
            left.right.parent = node;

        left.parent = node.parent;

        if (node.parent == null)
            root = left;
        else if (node == node.parent.right)
            node.parent.right = left;
        else
            node.parent.left = left;

        left.right = node;
        node.parent = left;
    }

    // 其他方法:查找、删除等
    // ...

}

Summary:
This article introduces how to implement red-black tree in C# Implement the red-black tree algorithm and provide detailed code examples. Red-black tree is a self-balancing binary search tree with better performance in insertion, deletion and search operations. By using red-black trees, we can solve some common problems more efficiently. In practical applications, we can appropriately adjust and expand the functions of the red-black tree as needed. I hope this article will be helpful to you and spark your interest and in-depth research on red-black trees.

The above is the detailed content of How to implement the red-black tree algorithm in C#. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Is C# Always Associated with .NET? Exploring AlternativesIs C# Always Associated with .NET? Exploring AlternativesMay 04, 2025 am 12:06 AM

C# is not always tied to .NET. 1) C# can run in the Mono runtime environment and is suitable for Linux and macOS. 2) In the Unity game engine, C# is used for scripting and does not rely on the .NET framework. 3) C# can also be used for embedded system development, such as .NETMicroFramework.

The .NET Ecosystem: C#'s Role and BeyondThe .NET Ecosystem: C#'s Role and BeyondMay 03, 2025 am 12:04 AM

C# plays a core role in the .NET ecosystem and is the preferred language for developers. 1) C# provides efficient and easy-to-use programming methods, combining the advantages of C, C and Java. 2) Execute through .NET runtime (CLR) to ensure efficient cross-platform operation. 3) C# supports basic to advanced usage, such as LINQ and asynchronous programming. 4) Optimization and best practices include using StringBuilder and asynchronous programming to improve performance and maintainability.

C# as a .NET Language: The Foundation of the EcosystemC# as a .NET Language: The Foundation of the EcosystemMay 02, 2025 am 12:01 AM

C# is a programming language released by Microsoft in 2000, aiming to combine the power of C and the simplicity of Java. 1.C# is a type-safe, object-oriented programming language that supports encapsulation, inheritance and polymorphism. 2. The compilation process of C# converts the code into an intermediate language (IL), and then compiles it into machine code execution in the .NET runtime environment (CLR). 3. The basic usage of C# includes variable declarations, control flows and function definitions, while advanced usages cover asynchronous programming, LINQ and delegates, etc. 4. Common errors include type mismatch and null reference exceptions, which can be debugged through debugger, exception handling and logging. 5. Performance optimization suggestions include the use of LINQ, asynchronous programming, and improving code readability.

C# vs. .NET: Clarifying the Key Differences and SimilaritiesC# vs. .NET: Clarifying the Key Differences and SimilaritiesMay 01, 2025 am 12:12 AM

C# is a programming language, while .NET is a software framework. 1.C# is developed by Microsoft and is suitable for multi-platform development. 2..NET provides class libraries and runtime environments, and supports multilingual. The two work together to build modern applications.

Beyond the Hype: Assessing the Current Role of C# .NETBeyond the Hype: Assessing the Current Role of C# .NETApr 30, 2025 am 12:06 AM

C#.NET is a powerful development platform that combines the advantages of the C# language and .NET framework. 1) It is widely used in enterprise applications, web development, game development and mobile application development. 2) C# code is compiled into an intermediate language and is executed by the .NET runtime environment, supporting garbage collection, type safety and LINQ queries. 3) Examples of usage include basic console output and advanced LINQ queries. 4) Common errors such as empty references and type conversion errors can be solved through debuggers and logging. 5) Performance optimization suggestions include asynchronous programming and optimization of LINQ queries. 6) Despite the competition, C#.NET maintains its important position through continuous innovation.

The Future of C# .NET: Trends and OpportunitiesThe Future of C# .NET: Trends and OpportunitiesApr 29, 2025 am 12:02 AM

The future trends of C#.NET are mainly focused on three aspects: cloud computing, microservices, AI and machine learning integration, and cross-platform development. 1) Cloud computing and microservices: C#.NET optimizes cloud environment performance through the Azure platform and supports the construction of an efficient microservice architecture. 2) Integration of AI and machine learning: With the help of the ML.NET library, C# developers can embed machine learning models in their applications to promote the development of intelligent applications. 3) Cross-platform development: Through .NETCore and .NET5, C# applications can run on Windows, Linux and macOS, expanding the deployment scope.

C# .NET Development Today: Trends and Best PracticesC# .NET Development Today: Trends and Best PracticesApr 28, 2025 am 12:25 AM

The latest developments and best practices in C#.NET development include: 1. Asynchronous programming improves application responsiveness, and simplifies non-blocking code using async and await keywords; 2. LINQ provides powerful query functions, efficiently manipulating data through delayed execution and expression trees; 3. Performance optimization suggestions include using asynchronous programming, optimizing LINQ queries, rationally managing memory, improving code readability and maintenance, and writing unit tests.

C# .NET: Building Applications with the .NET EcosystemC# .NET: Building Applications with the .NET EcosystemApr 27, 2025 am 12:12 AM

How to build applications using .NET? Building applications using .NET can be achieved through the following steps: 1) Understand the basics of .NET, including C# language and cross-platform development support; 2) Learn core concepts such as components and working principles of the .NET ecosystem; 3) Master basic and advanced usage, from simple console applications to complex WebAPIs and database operations; 4) Be familiar with common errors and debugging techniques, such as configuration and database connection issues; 5) Application performance optimization and best practices, such as asynchronous programming and caching.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool

SecLists

SecLists

SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools