


To check if a given path between two centers of a graph conforms to the shortest path, you can combine the entire edge weights along the given path with the same center by using a reliable shortest path The shortest distance between them is calculated using a comparative method, such as the Dijkstra calculation or the Floyd−Warshall calculation. If all edge weights on a given path match the most limited deletion, then it represents the simplest path. Also: If the overall edge weight is more prominent than the shortest distance, it indicates that there is a short distance between the two centers in the graph.
usage instructions
Dijkstra’s algorithm
Floyd−Warshall algorithm with marginal inversion cost
Greedy Algorithm
Dijkstra's calculation is perhaps a popular graph traversal calculation used to find the most limited path between a source center and all other centers in a graph. In the case of checking whether a given path between two centers is related to the most finite path, Dijkstra's calculation can be used to calculate the most finite separation between these centers. By running Dijkstra's calculation from the starting hub, we get the most finite intervals for all other hubs. If a given route matches the most limited distance between two hubs, then it represents a substantial and shortest route. Others: If the given route is longer than the calculated shortest distance, it indicates that a shorter route exists in the chart.
algorithm
Create the shortest path (graph, source, destination):
Initialize a set of "past" to store the distance to the center, and initialize a word reference interval to store the most limited distance.
Set the source hub's spacing to infinity and all other hubs' spacing to infinity in the separator dictionary.
Although there are unvisited nodes,
a. The center with the smallest distance from the separator word reference is selected and marked as visited.
b. For each neighbor hub of the current node:
The temporary interval is calculated by adding the edge weight to the distance of the current node.
If the condition spacing is smaller than the storage spacing, then the inspection distance.
Returns true if the shortest distance from source to destination in separation breaks even with the given path length (the given path represents the shortest path). Otherwise, return false.
This calculation utilizes Dijkstra's method to calculate the shortest interval and then compares the shortest distance from the source to the destination with the given path length to determine if it is the shortest path.
Example
#include <iostream> #include <vector> #include <queue> #include <limits> using namespace std; const int INF = numeric_limits<int>::max(); bool shortestPath(vector<vector<pair<int, int>>>& graph, int source, int destination, int pathLength) { int numNodes = graph.size(); vector<int> distances(numNodes, INF); distances[source] = 0; priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> pq; pq.emplace(0, source); while (!pq.empty()) { int u = pq.top().second; int dist = pq.top().first; pq.pop(); if (dist > distances[u]) continue; for (auto& neighbor : graph[u]) { int v = neighbor.first; int weight = neighbor.second; if (dist + weight < distances[v]) { distances[v] = dist + weight; pq.emplace(distances[v], v); } } } return (distances[destination] == pathLength); } int main() { int numNodes = 6; vector<vector<pair<int, int>>> graph(numNodes); // Build the graph graph[0].emplace_back(1, 2); graph[0].emplace_back(2, 5); graph[1].emplace_back(3, 4); graph[1].emplace_back(4, 1); graph[2].emplace_back(3, 2); graph[3].emplace_back(4, 3); graph[3].emplace_back(5, 6); graph[4].emplace_back(5, 2); int source = 0; int destination = 5; int pathLength = 8; bool isShortestPath = shortestPath(graph, source, destination, pathLength); if (isShortestPath) cout << "The given path represents a shortest path." << endl; else cout << "The given path does not represent a shortest path." << endl; return 0; }
Output
The given path does not represent a shortest path.
Floyd−Warshall algorithm with marginal inversion cost
The Floyd-Warshall calculation is a dynamically programmed calculation that finds the shortest path between all pairs of centers in a graph. In the case of checking whether a given path between two centers is related to the most limited path, the Floyd-Warshall calculation can be used to calculate the shortest separation between all sets of centers in the graph. By comparing the calculated shortest distance to all edge weights on a given path, we can determine whether a given path involves the most limited path. If the overall edge weight matches the shortest separation, then the given path at this time is probably the most limited path between two centers in the graph.algorithm
Make a 2D lattice measuring numNodes x numNodes and initialize it to infinity (INF) for all node sets.
Set the corner-to-corner addition of dist to 0.
For each coordination edge (u, v) with weight w in the graph, completely modify dist[u][v] to w and modify dist[v][u] to w w_reversal, where w_reversal is obtained by reversing the edge (v, u).
Perform the Floyd−Warshall calculation after the canned loop:
For each halfway hub from numNodes to 1, do the following:
For each aggregate of hubs i and j from numNodes to 1, refine dist[i][j] to the minimum of the following values:
Distance[i][j]
Distance[i][k]Distance[k][j]
After the calculation is complete, dist will contain the most limited separation between all hub groups, taking into account edge inversion costs.
To check if a given route between two hubs (source and destination) is the shortest route, compare the length of the given route with the distance [source][destination]. If so, the given way is the most limited way.
Example
#include <iostream> #include <vector> using namespace std; const int INF = 1e9; void floydWarshall(vector<vector<int>>& graph, int numNodes) { vector<vector<int>> dist(graph); // Distance matrix initialized with the graph for (int k = 0; k < numNodes; k++) { for (int i = 0; i < numNodes; i++) { for (int j = 0; j < numNodes; j++) { dist[i][j] = min(dist[i][j], dist[i][k] + dist[k][j]); } } } // Printing the shortest distances cout << "Shortest distances between all pairs of nodes:" << endl; for (int i = 0; i < numNodes; i++) { for (int j = 0; j < numNodes; j++) { if (dist[i][j] == INF) cout << "INF "; else cout << dist[i][j] << " "; } cout << endl; } } int main() { int numNodes = 4; // Number of nodes // Adjacency matrix representation of the graph with edge weights and edge reversal costs vector<vector<int>> graph = { {0, 5, INF, 10}, {INF, 0, 3, INF}, {INF, INF, 0, 1}, {INF, INF, INF, 0} }; floydWarshall(graph, numNodes); return 0; }
Output
Shortest distances between all pairs of nodes: 0 5 8 9 INF 0 3 4 INF INF 0 1 INF INF INF 0
in conclusion
This article explores how to check whether a given path between two centers of a graph represents the most finite path. It illustrates two methods: the Dijkstra calculation and the Floyd-Warshall calculation for obtaining edge inversions. Code usage in C illustrates these calculations. It also briefly explains calculations and their uses. This article is intended to help readers understand how to find the most limited method in a diagram and determine whether a given method is undoubtedly the simplest.
The above is the detailed content of Checks whether the path between two nodes in the given graph represents the shortest path. For more information, please follow other related articles on the PHP Chinese website!

Windows11具有如此多的自定义选项,包括一系列主题和壁纸。虽然这些主题以自己的方式是美学,但一些用户仍然想知道他们在Windows11上的后台位置。本指南将展示访问Windows11主题背景位置的不同方法。什么是Windows11默认主题背景?Windows11默认主题背景是一朵盛开的抽象宝蓝色花朵,背景为天蓝色。这种背景是最受欢迎的背景之一,这要归功于操作系统发布之前的预期。但是,操作系统还附带了一系列其他背景。因此,您可以随时更改Windows11桌面主题背景。主题背景存储在Windo

由于技术错误,无法播放此视频。(错误代码:102006)本指南提供了针对此常见问题的简单修复,并继续您的编码之旅。我们还将讨论Java错误的原因以及将来如何防止它。什么是Java中的“错误:找不到或加载主类”?Java是一种强大的编程语言,使开发人员能够创建广泛的应用程序。然而,它的多功能性和效率伴随着开发过程中可能发生的一系列常见错误。其中一个中断是错误:找不到或加载主类user_jvm_args.txt,当Java虚拟机(JVM)找不到主类来执行程序时会出现这种情况。此错误充当了障碍,甚至在

文件路径是操作系统中用于识别和定位文件或文件夹的字符串。在文件路径中,常见的有两种符号分隔路径,即正斜杠(/)和反斜杠()。这两个符号在不同的操作系统中有不同的使用方式和含义。正斜杠(/)是Unix和Linux系统中常用的路径分隔符。在这些系统中,文件路径是以根目录(/)为起始点,每个目录之间使用正斜杠进行分隔。例如,路径/home/user/Docume

Win11系统中“我的电脑”路径有何不同?快速查找方法!随着Windows系统的不断更新,最新的Windows11系统也带来了一些新的变化和功能。其中一个常见的问题是用户在Win11系统中找不到“我的电脑”的路径,这在之前的Windows系统中通常是很简单的操作。本文将介绍Win11系统中“我的电脑”的路径有何不同,以及快速查找的方法。在Windows1

在Linux系统中,RPM(RedHatPackageManager)是一种常见的软件包管理工具,用于安装、升级和删除软件包。有时候我们需要找到某个已安装的RPM文件的存储路径,以便进行查找或者其他操作。下面将介绍在Linux系统中如何查找RPM文件的存储路径,同时提供具体的代码示例。首先,我们可以使用rpm命令来查找已安装的RPM包及其存储路径。打开

Python3.x中如何使用os.path模块获取文件路径的各个部分在日常的Python编程中,我们经常需要对文件路径进行操作,例如获取路径的文件名、文件目录、扩展名等等。在Python中,可以使用os.path模块来进行这些操作。本文将介绍如何使用os.path模块来获取文件路径的各个部分,以便更好地操作文件。os.path模块提供了一系

Linux内核是一个开源的操作系统内核,其源代码存储在一个专门的代码仓库中。在本文中,我们将详细解析Linux内核源代码的存放路径,并通过具体的代码示例来帮助读者更好地理解。1.Linux内核源代码存放路径Linux内核源代码存储在一个名为linux的Git仓库中,该仓库托管在[https://github.com/torvalds/linux](http

javafx.scene.shape包提供了一些类,您可以使用它们绘制各种2D形状,但这些只是原始形状,如直线、圆形、多边形和椭圆形等等...因此,如果您想绘制复杂的自定义形状,您需要使用Path类。Path类Path类使用此表示形状的几何轮廓您可以绘制自定义路径。为了绘制自定义路径,JavaFX提供了各种路径元素,所有这些都可以作为javafx.scene.shape包中的类使用。LineTo-该类表示路径元素line。它可以帮助您从当前坐标到指定(新)坐标绘制一条直线。HlineTo-这是表


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

WebStorm Mac version
Useful JavaScript development tools

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.
