


Use C++ to delete all nodes that are not on any path and the path sum is less than k
In this problem, we have a binary tree whose path from root node to leaf node is fully defined. The sum of all nodes from the root node to the leaf nodes must be greater than or equal to k. So we need to delete all nodes in the path whose sum is less than k. The important thing to remember here is that a node may be part of many paths, so such nodes are removed only if the sum of all paths
From the root node to the leaf nodes, we can calculate the sum. When the recursive call to the node completes and control returns, we can check if the sum of the left and right paths
Suppose we have 150 K and a tree like this -
10 / \ 20 30 / \ / \ 5 35 40 45 / \ / \ 50 55 60 65 / \ / / 70 80 90 100
If we see that the sum of the path root->left->left is 10 20 5, which is 25, which is less than 150, We need to prune it and remove 5. After that, let's evaluate 10->30->40. It's less than 150, so delete 40. Now we see another path 10->20->35->50, the sum of 115 is less than 150, so we delete 50. Now we are left with paths that are
10->20->35->55->70 ; 10->20->35->55->80 ; 10->30->45->60->90 ; 10->30->45->65->100 ;
The sum of all paths is greater than 150, so we don't need to prune anymore.
Example
#include <iostream> using namespace std; class Node { public: int value; Node *left, *right; Node(int value) { this->value = value; left = right = NULL; } }; Node* removeNodesWithPathSumLessThanK(Node* root, int k, int& sum) { if(root == NULL) return NULL; int leftSum, rightSum; leftSum = rightSum = sum + root->value; root->left = removeNodesWithPathSumLessThanK(root->left, k, leftSum); root->right = removeNodesWithPathSumLessThanK(root->right, k, rightSum); sum = max(leftSum, rightSum); if(sum < k) { free(root); root = NULL; } return root; } void printInorderTree(Node* root) { if(root) { printInorderTree(root->left); cout << root->value << " "; printInorderTree(root->right); } } int main() { int k = 150; Node* root = new Node(10); root->left = new Node(20); root->right = new Node(30); root->left->left = new Node(5); root->left->right = new Node(35); root->right->left = new Node(40); root->right->right = new Node(45); root->left->right->left = new Node(50); root->left->right->right = new Node(55); root->right->right->left = new Node(60); root->right->right->right = new Node(65); root->left->right->right->left = new Node(70); root->left->right->right->right = new Node(80); root->right->right->left->left = new Node(90); root->right->right->right->left = new Node(100); int sum = 0; cout << "Inorder tree before: "; printInorderTree(root); root = removeNodesWithPathSumLessThanK(root, k, sum); cout << "\nInorder tree after: "; printInorderTree(root); return 0; }
Output
Inorder tree before: 5 20 50 35 70 55 80 10 40 30 90 60 45 100 65 Inorder tree after: 20 35 70 55 80 10 30 90 60 45 100 65
Our fully pruned tree -
10 / \ 20 30 \ \ 35 45 \ / \ 55 60 65 / \ / / 70 80 90 100
Conclusion
As we can see, After the initial observation, we can apply DFS and remove nodes by calculating the sum of that node as the recursive function returns from each call. Overall, this is a simple matter of observation and methodology.
The above is the detailed content of Use C++ to delete all nodes that are not on any path and the path sum is less than k. For more information, please follow other related articles on the PHP Chinese website!

There are significant differences in the learning curves of C# and C and developer experience. 1) The learning curve of C# is relatively flat and is suitable for rapid development and enterprise-level applications. 2) The learning curve of C is steep and is suitable for high-performance and low-level control scenarios.

There are significant differences in how C# and C implement and features in object-oriented programming (OOP). 1) The class definition and syntax of C# are more concise and support advanced features such as LINQ. 2) C provides finer granular control, suitable for system programming and high performance needs. Both have their own advantages, and the choice should be based on the specific application scenario.

Converting from XML to C and performing data operations can be achieved through the following steps: 1) parsing XML files using tinyxml2 library, 2) mapping data into C's data structure, 3) using C standard library such as std::vector for data operations. Through these steps, data converted from XML can be processed and manipulated efficiently.

C# uses automatic garbage collection mechanism, while C uses manual memory management. 1. C#'s garbage collector automatically manages memory to reduce the risk of memory leakage, but may lead to performance degradation. 2.C provides flexible memory control, suitable for applications that require fine management, but should be handled with caution to avoid memory leakage.

C still has important relevance in modern programming. 1) High performance and direct hardware operation capabilities make it the first choice in the fields of game development, embedded systems and high-performance computing. 2) Rich programming paradigms and modern features such as smart pointers and template programming enhance its flexibility and efficiency. Although the learning curve is steep, its powerful capabilities make it still important in today's programming ecosystem.

C Learners and developers can get resources and support from StackOverflow, Reddit's r/cpp community, Coursera and edX courses, open source projects on GitHub, professional consulting services, and CppCon. 1. StackOverflow provides answers to technical questions; 2. Reddit's r/cpp community shares the latest news; 3. Coursera and edX provide formal C courses; 4. Open source projects on GitHub such as LLVM and Boost improve skills; 5. Professional consulting services such as JetBrains and Perforce provide technical support; 6. CppCon and other conferences help careers

C# is suitable for projects that require high development efficiency and cross-platform support, while C is suitable for applications that require high performance and underlying control. 1) C# simplifies development, provides garbage collection and rich class libraries, suitable for enterprise-level applications. 2)C allows direct memory operation, suitable for game development and high-performance computing.

C Reasons for continuous use include its high performance, wide application and evolving characteristics. 1) High-efficiency performance: C performs excellently in system programming and high-performance computing by directly manipulating memory and hardware. 2) Widely used: shine in the fields of game development, embedded systems, etc. 3) Continuous evolution: Since its release in 1983, C has continued to add new features to maintain its competitiveness.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

SublimeText3 Linux new version
SublimeText3 Linux latest version

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

Notepad++7.3.1
Easy-to-use and free code editor