search
HomeBackend DevelopmentC++Generates all possible strings formed by replacing letters with the given corresponding symbols

Generates all possible strings formed by replacing letters with the given corresponding symbols

Generating all possible strings is to replace a certain character in the string with the corresponding symbol and generate all possible strings. We will get a string "s" of size "N" and an unordered map "mp" of character pairs of size "M". Here we can replace mp[i][0] in string "s" with mp[i][1] so that our task is to generate all possible strings.

ExampleExample

Input: s = “xyZ”, mp = {‘x’ : ‘$’, ‘y’ : ‘#’, ‘Z’ : ‘^’}
Output: 
xyZ
xy^
x#Z
z#^
$yZ
$y^
$#Z
$#^

Explanation − In the above example, a total of 8 strings are generated.

Input: s = “pQ”, mp = {‘p’ : ‘#’, ‘Q’ : ‘$’}
Output:
pQ
#Q
p$
#$

Description - In the above example, a total of 4 strings are generated.

Input: s = “w”, mp = {‘w’ : ‘#’}
Output:
w
#

Explanation − In the above example, a total of 2 strings are generated.

method

In this approach we will use the concept of brute force to find all possible combinations.

  • First, we will create a function that will take as parameters a string, the current index, and the given map, and the return type will be void.

  • In this function, we will define the basic condition that the current index is equal to the size of the string, and then we will print the string and return it from the function.

  • Otherwise, we will have two options, one is to not change the current index and move to the next one, which will always be an option.

  • The second option is only possible if the current character has a replacement. If the replacement exists, then we will call the replacement.

  • Afterwards we will return from the function, which will automatically produce all the required results.

Let us discuss the code of the above method for better understanding.

Example

#include <bits/stdc++.h>
using namespace std;
// Function to generate all possible strings by replacing the characters with paired symbols
void possibleStrings(string str, int idx, unordered_map<char, char> mp){
   if (idx == str.size()) {
      cout << str << endl;
      return;
   }
   // Function call with the idx-th character not replaced
   possibleStrings(str, idx + 1, mp);
   // Replace the idx-th character
   str[idx] = mp[str[idx]];
   // Function call with the idx-th character replaced
   possibleStrings(str, idx + 1, mp);
   return;
}
int main(){
   string str = "xyZ";
   unordered_map<char, char> mp;
   mp['x'] = '$';
   mp['y'] = '#';
   mp['Z'] = '^';
   mp['q'] = '&';
   mp['2'] = '*';
   mp['1'] = '!';
   mp['R'] = '@';
   int idx = 0;
   // Call 'possibleStrings' function to generate all possible strings
   //Here in the 'possible strings' function, we have passed string 'str', index 'idx', and map 'mp'
   possibleStrings(str, idx, mp);
   return 0;
}

Output

xyZ
xy^
x#Z
x#^
$yZ
$y^
$#Z
$#^

Time and space complexity

The time complexity of the above code is O(N*2^N) because we have just backtracked on N elements, where N is the size of the string 's'.

The space complexity of the above code is O(N*N), because we send the string as a complete string, and there may be N copies of the string at the same time.

Backtracking algorithm

In the previous method, the string we sent did not have a pointer, which took up a lot of space. To reduce space and time complexity, we will use the concept of backtracking.

Example

#include <bits/stdc++.h>
using namespace std;
// Function to generate all possible strings by replacing the characters with paired symbols
void possibleStrings(string& str, int idx, unordered_map<char, char> mp){
   if (idx == str.size()) {
      cout << str << endl;
      return;
   }
   // Function call with the idx-th character not replaced
   possibleStrings(str, idx + 1, mp);
   // storing the current element 
   char temp = str[idx];
   // Replace the idx-th character
   str[idx] = mp[str[idx]];
   // Function call with the idx-th character replaced
   possibleStrings(str, idx + 1, mp);
   // backtracking 
   str[idx] = temp;
   return;
}
int main(){
   string str = "xyZ";
   unordered_map<char, char> mp;
   mp['x'] = '$';
   mp['y'] = '#';
   mp['Z'] = '^';
   mp['q'] = '&';
   mp['2'] = '*';
   mp['1'] = '!';
   mp['R'] = '@';
   int idx = 0;
   // Call 'possibleStrings' function to generate all possible strings
   //Here in the 'possible strings' function, we have passed string 'str', index 'idx', and map 'mp'
   possibleStrings(str, idx, mp);
   return 0;
}

Output

xyZ
xy^
x#Z
x#^
$yZ
$y^
$#Z
$#^

Time and space complexity

The time complexity of the above code is O(N*2^N) because we have just backtracked on N elements, where N is the size of the string 's'.

The space complexity of the above code is O(N), because we are sending the address of the string, and there will only be at most N stacks going down.

in conclusion

In this tutorial, we have implemented a program to generate all possible strings by replacing letters with given symbols. Here, we have seen the backtracking method, and the time complexity of the code is O(N*2^N), where N is the size of the string, and the space complexity is the same as the time complexity. To reduce space complexity, we have implemented a backtracking process.

The above is the detailed content of Generates all possible strings formed by replacing letters with the given corresponding symbols. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:tutorialspoint. If there is any infringement, please contact admin@php.cn delete
Gulc: C library built from scratchGulc: C library built from scratchMar 03, 2025 pm 05:46 PM

Gulc is a high-performance C library prioritizing minimal overhead, aggressive inlining, and compiler optimization. Ideal for performance-critical applications like high-frequency trading and embedded systems, its design emphasizes simplicity, modul

What are the types of values ​​returned by c language functions? What determines the return value?What are the types of values ​​returned by c language functions? What determines the return value?Mar 03, 2025 pm 05:52 PM

This article details C function return types, encompassing basic (int, float, char, etc.), derived (arrays, pointers, structs), and void types. The compiler determines the return type via the function declaration and the return statement, enforcing

What are the definitions and calling rules of c language functions and what are theWhat are the definitions and calling rules of c language functions and what are theMar 03, 2025 pm 05:53 PM

This article explains C function declaration vs. definition, argument passing (by value and by pointer), return values, and common pitfalls like memory leaks and type mismatches. It emphasizes the importance of declarations for modularity and provi

C language function format letter case conversion stepsC language function format letter case conversion stepsMar 03, 2025 pm 05:53 PM

This article details C functions for string case conversion. It explains using toupper() and tolower() from ctype.h, iterating through strings, and handling null terminators. Common pitfalls like forgetting ctype.h and modifying string literals are

Where is the return value of the c language function stored in memory?Where is the return value of the c language function stored in memory?Mar 03, 2025 pm 05:51 PM

This article examines C function return value storage. Small return values are typically stored in registers for speed; larger values may use pointers to memory (stack or heap), impacting lifetime and requiring manual memory management. Directly acc

How does the C   Standard Template Library (STL) work?How does the C Standard Template Library (STL) work?Mar 12, 2025 pm 04:50 PM

This article explains the C Standard Template Library (STL), focusing on its core components: containers, iterators, algorithms, and functors. It details how these interact to enable generic programming, improving code efficiency and readability t

distinct usage and phrase sharingdistinct usage and phrase sharingMar 03, 2025 pm 05:51 PM

This article analyzes the multifaceted uses of the adjective "distinct," exploring its grammatical functions, common phrases (e.g., "distinct from," "distinctly different"), and nuanced application in formal vs. informal

How do I use algorithms from the STL (sort, find, transform, etc.) efficiently?How do I use algorithms from the STL (sort, find, transform, etc.) efficiently?Mar 12, 2025 pm 04:52 PM

This article details efficient STL algorithm usage in C . It emphasizes data structure choice (vectors vs. lists), algorithm complexity analysis (e.g., std::sort vs. std::partial_sort), iterator usage, and parallel execution. Common pitfalls like

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
Repo: How To Revive Teammates
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

DVWA

DVWA

Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment