


We have two arrays of integers, one with calculated elements and the other with the split points required to split the array to generate subsets, we have to calculate each subset in each split The sum of and returns the maximum subset
Let us understand through an example:-
Input− int arr[] = int arr[] = { 9, 4, 5, 6, 7 } int splitPoints[] = { 0, 2, 3, 1 };
Output− The maximum subarray sum after each split [22, 13, 9 , 9]
Explanation− Here we decompose the array according to its split points, and obtain the maximum subset sum after each split
First After the second split strong> → {9} and {4,5,6,7} >> The maximum subarray sum is - 22
After the second split → {9} , {4,5} and {6,7} >> The maximum subarray sum is - 13
After the third split →{9}, {4,5}, { 6} and {7} >> The maximum subarray sum is - 9
After the fourth split →{9}, {4}, {5}, {6} and { 7} >> Maximum subarray sum is- 9
input−int arr[] = int arr[] = { 7, 8, 5, 9, 1 } int splitPoints[] = { 1, 2, 0, 3 };
Output−The maximum subarray sum after each division [15, 115, 10, 9]
Explanation−Here we decompose the array according to its split points, and obtain the maximum subset sum after each split
After the first split → {7, 8} and {5,9,1} >> The maximum subarray sum is 15
After the second split → {7,8}, {5} and {9,1 } >> The maximum sub-array sum is 115
After the third split →{7}, {8}, {5} and {9,1} >> The maximum sub-array sum is 10
After the fourth split →{7}, {8}, {5}, {9} and {1} >> the maximum sub-array sum is 9
The methods used in the following program are as follows -
-
We will start from the main() method
Enter the array of any given length , such as arr[] and splitPoints[]. Their lengths are calculated and passed to the method in the form calculateSubsetSum(arr.length, splitPoints.length, splitPoints, arr).
-
In the method calculateSubsetSum()
Create an integer array as sum[] and set sum[0 ] is set to arr[0].
Start looping FOR from i to 1 until the length of the array, and set sum[i] to sum[i - 1] arr[i] and set temp[0] to new subSets(0, n - 1, sum[n - 1]).
Continue to add t2.add(temp[0]) and t1.add(0)
Start looping FOR from i to 0, up to the length of the splitPoints array. Inside the loop set currentSplitPoint to t1.floor(splitPoints[i]) and remove from t2 to t2.remove(temp[currentSplitPoint])
Set end to temp[currentSplitPoint ] .last and temp[currentSplitPoint] as new subSets(currentSplitPoint, splitPoints[i], sum[splitPoints[i]] - (currentSplitPoint == 0 ? 0 : sum[currentSplitPoint - 1]))
Use t2.add(temp[currentSplitPoint]) and temp[splitPoints[i] 1] = new subSets(splitPoints[i] 1, end, sum[end] - sum[splitPoints[i] add] ])
- ##Use t2.add(temp[splitPoints[i] 1]), t1.add(currentSplitPoint) and t1.add(splitPoints[i] to add 1)
- Print t2.first() value.
- Create a class subSets and declare first, last and value as its data members and define the default constructor as subSets(int f, int l, int v), and set first to f, last to l, and value to v
- Create a class as utilityComparator, which will implement Comparator
- Create a public method as a comparison and check IF s2.value is not equal to s1.value, then return s2.value - s1.value.
- Check whether s1.first is not equal to s2.first, and then return s2.first - s1.first
p>
import java.io.IOException;
import java.io.InputStream;
import java.util.*;
class utilityComparator implements Comparator<subSets>{
public int compare(subSets s1, subSets s2){
if(s2.value != s1.value){
return s2.value - s1.value;
}
if(s1.first != s2.first){
return s2.first - s1.first;
}
return 0;
}
}
class subSets{
int first;
int last;
int value;
subSets(int f, int l, int v){
first = f;
last = l;
value = v;
}
}
public class testClass{
static void calculateSubsetSum(int n, int k, int splitPoints[], int arr[]){
int sum[] = new int[n];
sum[0] = arr[0];
for (int i = 1; i < n; i++){
sum[i] = sum[i - 1] + arr[i];
}
TreeSet<Integer> t1 = new TreeSet<>();
TreeSet<subSets> t2 = new TreeSet<>(new utilityComparator());
subSets temp[] = new subSets[n];
temp[0] = new subSets(0, n - 1, sum[n - 1]);
t2.add(temp[0]);
t1.add(0);
System.out.println("Maximum subarray sum after each split");
for (int i = 0; i < k; i++){
int currentSplitPoint = t1.floor(splitPoints[i]);
t2.remove(temp[currentSplitPoint]);
int end = temp[currentSplitPoint].last;
temp[currentSplitPoint] = new subSets(currentSplitPoint, splitPoints[i], sum[splitPoints[i]] - (currentSplitPoint == 0 ? 0 : sum[currentSplitPoint - 1]));
t2.add(temp[currentSplitPoint]);
temp[splitPoints[i] + 1] = new subSets(splitPoints[i] + 1, end, sum[end] - sum[splitPoints[i]]);
t2.add(temp[splitPoints[i] + 1]);
t1.add(currentSplitPoint);
t1.add(splitPoints[i] + 1);
System.out.println(t2.first().value);
}
}
public static void main(String[] args){
int arr[] = { 2, 1, 6, 8, 5, 10, 21, 13};
int splitPoints[] = { 3, 1, 2, 0, 4, 5 };
calculateSubsetSum(arr.length, splitPoints.length, splitPoints, arr);
}
}
OutputIf we run the above code it will generate the following outputMaximum subarray sum after each split 49 49 49 49 44 34
The above is the detailed content of In Java, find the maximum subarray sum of subarrays after splitting an array into subarrays based on a given query. For more information, please follow other related articles on the PHP Chinese website!

我们有两个整数数组,一个具有计算的元素,另一个具有分割数组以生成子集所需的分割点,我们必须计算每个分割中每个子集的总和并返回最大子集让我们通过示例来理解:-输入−intarr[]=intarr[]={9,4,5,6,7}intsplitPoints[]={0,2,3,1};输出−每次分割后的最大子数组和[22,13,9,9]解释−这里我们根据数组的分割点来分解数组,并在每次分割后获得最大子集和第一次分割后→{9}和{4,5,6,7}>>最大子数组总和为-22第二次分割后→{9},{4

在本文中,我们将使用C++解决寻找最大值和最小值相同的子数组数量的问题。以下是该问题的示例−Input:array={2,3,6,6,2,4,4,4}Output:12Explanation:{2},{3},{6},{6},{2},{4},{4},{4},{6,6},{4,4},{4,4}and{4,4,4}arethesubarrayswhichcanbeformedwithmaximumandminimumelementsame.Input:array={3,3,1,5,

子数组是数组的连续部分。例如,我们考虑一个数组[5,6,7,8],那么有十个非空子数组,如(5),(6),(7),(8),(5,6),(6,7)、(7,8)、(5,6,7)、(6,7,8)和(5,6,7,8)。在本指南中,我们将解释在C++中查找所有可能的信息来查找具有奇数和的子数组的数量。为了找到奇数和的子数组的数量,我们可以使用不同的方法,所以这里是一个简单的例子-Input:array={9,8,7,6,5}Output:9Explanation:Sumofsubarray-{9}=9{7

PHP数组是一种非常常用的数据结构,在开发中经常涉及到对数组的合并和分割操作。本文将介绍如何使用PHP语言实现这两种操作,并附上相应的代码示例。一、合并数组合并数组的操作可以使用array_merge()函数来实现。该函数接受多个数组作为参数,并将它们合并成一个新的数组。代码示例:$array1=["apple","ba

在这篇文章中,我们将使用C++找出具有小于K的和的子数组的数量。在这个问题中,我们有一个数组arr[]和一个整数K。现在我们需要找出和小于K的子数组。以下是示例−Input:arr[]={1,11,2,3,15}K=10Output:4{1},{2},{3}and{2,3}寻找解决方案的方法现在我们将使用两种不同的方法来解决给定的问题-暴力破解在这种方法中,我们将迭代遍历所有子数组并计算它们的总和,如果总和小于k,则与k进行比较,以增加我们的答案。示例#include<

数组是一组相似的数据集合,以连续的方式存储在相邻的内存位置上。通过将偏移值定义为数据库的特定基值,可以更容易地评估每个元素的特定位置。该特定索引的基值为零,偏移值是两个特定索引之间的差值。子数组是特定数组的一部分,可以定义为一组变量,具有多个值的标签。最长的子数组指的是数组中所有元素都大于K的数组。这里最大和子数组的和为-给定数据集中的少于等于给定的数据集。给定数据集中的少于要找到最长子数组的长度,我们只需要找出特定子数组中1的总数。注意:计数应该大于零的计数。最大公约数是一种数学现象,在其中我

在本文中,我们将描述查找子数组中素数数量的方法。我们有一个正数数组arr[]和q个查询,其中有两个整数表示我们的范围{l,R},我们需要找到给定范围内的素数数量。下面是给定问题的示例-Input:arr[]={1,2,3,4,5,6},q=1,L=0,R=3Output:2Inthegivenrangetheprimesare{2,3}.Input:arr[]={2,3,5,8,12,11},q=1,L=0,R=5Output:4Inthegivenrangetheprimesare{2,3,5

我们得到一个包含整数值的数组Arr[]。目标是找到XOR为0的子数组的最大数量。任何子数组的位都可以交换任意次数。注意:-1


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

Dreamweaver CS6
Visual web development tools

SublimeText3 Linux new version
SublimeText3 Linux latest version

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),
