A spanning tree is a directed undirected graph subgraph that connects all vertices. There can be many spanning trees in a graph. The minimum spanning tree (MST) on each graph has the same or smaller weight than all other spanning trees. Weights are assigned to the edges of the spanning tree, and the sum is the weight assigned to each edge. Since V is the number of vertices in the graph, the number of edges of the minimum spanning tree is (V - 1), where V is the number of edges.
Use Kruskal's algorithm to find the minimum spanning tree
All edges should be sorted in non-descending order by weight.
Select the smallest edge. If no loop is formed, the edge is included.
Step 2 should be performed until the spanning tree has (V-1) edges.
In this case, we are told to use the greedy approach. The greedy option is to choose the edge with the smallest weight. For example: the minimum spanning tree of this graph is (9-1)= 8 edges.
After sorting: Weight Src Dest 21 27 26 22 28 22 22 26 25 24 20 21 24 22 25 26 28 26 27 22 23 27 27 28 28 20 27 28 21 22 29 23 24 30 25 24 31 21 27 34 23 25
Now we need to select all edges based on sorting.
Contains edge 26-27->, because no loop is formed
Contains edge 28-22->, because no loop is formed
Includes edge 26- 25->, because no loop is formed.
Edge 20-21-> is included because no loop is formed
Edge 22-25-> is included because no loop is formed.
Edge 28-26-> dropped due to loop formation
Edge 22-23-> > included because no loop was formed
Edge 27-28- > Discarded due to loop formation
Edge 20-27-> Included because no loop was formed
Edge 21-22-> Discarded due to loop formation
Edge 23-24->Included because no cycle is formed
Since the number of edges is (V-1), the algorithm ends here.
Example
#include <stdio.h> #include <stdlib.h> #include <string.h> struct Edge { int src, dest, weight; }; struct Graph { int V, E; struct Edge* edge; }; struct Graph* createGraph(int V, int E){ struct Graph* graph = (struct Graph*)(malloc(sizeof(struct Graph))); graph->V = V; graph->E = E; graph->edge = (struct Edge*)malloc(sizeof( struct Edge)*E); return graph; } struct subset { int parent; int rank; }; int find(struct subset subsets[], int i){ if (subsets[i].parent != i) subsets[i].parent = find(subsets, subsets[i].parent); return subsets[i].parent; } void Union(struct subset subsets[], int x, int y){ int xroot = find(subsets, x); int yroot = find(subsets, y); if (subsets[xroot].rank < subsets[yroot].rank) subsets[xroot].parent = yroot; else if (subsets[xroot].rank > subsets[yroot].rank) subsets[yroot].parent = xroot; else{ subsets[yroot].parent = xroot; subsets[xroot].rank++; } } int myComp(const void* a, const void* b){ struct Edge* a1 = (struct Edge*)a; struct Edge* b1 = (struct Edge*)b; return a1->weight > b1->weight; } void KruskalMST(struct Graph* graph){ int V = graph->V; struct Edge result[V]; int e = 0; int i = 0; qsort(graph->edge, graph->E, sizeof(graph->edge[0]), myComp); struct subset* subsets = (struct subset*)malloc(V * sizeof(struct subset)); for (int v = 0; v < V; ++v) { subsets[v].parent = v; subsets[v].rank = 0; } while (e < V - 1 && i < graph->E) { struct Edge next_edge = graph->edge[i++]; int x = find(subsets, next_edge.src); int y = find(subsets, next_edge.dest); if (x != y) { result[e++] = next_edge; Union(subsets, x, y); } } printf("Following are the edges in the constructed MST\n"); int minimumCost = 0; for (i = 0; i < e; ++i){ printf("%d -- %d == %d\n", result[i].src, result[i].dest, result[i].weight); minimumCost += result[i].weight; } printf("Minimum Cost Spanning tree : %d",minimumCost); return; } int main(){ /* Let us create the following weighted graph 30 0--------1 | \ | 26| 25\ |15 | \ | 22--------23 24 */ int V = 24; int E = 25; struct Graph* graph = createGraph(V, E); graph->edge[0].src = 20; graph->edge[0].dest = 21; graph->edge[0].weight = 30; graph->edge[1].src = 20; graph->edge[1].dest = 22; graph->edge[1].weight = 26; graph->edge[2].src = 20; graph->edge[2].dest = 23; graph->edge[2].weight = 25; graph->edge[3].src = 21; graph->edge[3].dest = 23; graph->edge[3].weight = 35; graph->edge[4].src = 22; graph->edge[4].dest = 23; graph->edge[4].weight = 24; KruskalMST(graph); return 0; }
Output
Following are the edges in the constructed MST 22 -- 23 == 24 20 -- 23 == 25 20 -- 21 == 30 Minimum Cost Spanning tree : 79
Conclusion
This tutorial demonstrates how to use Kruskal's Minimum Spanning Tree Algorithm - Greedy method and C code to solve this question. We can also write this code in java, python and other languages. It is modeled after Kruskal's concept. This program finds the shortest spanning tree in a given graph. We hope you found this tutorial helpful.
The above is the detailed content of Kruskal's Minimum Spanning Tree Algorithm - Greedy Algorithm in C++. For more information, please follow other related articles on the PHP Chinese website!

VScode中怎么配置C语言环境?下面本篇文章给大家介绍一下VScode配置C语言环境的方法(超详细),希望对大家有所帮助!

在C语言中,node是用于定义链表结点的名称,通常在数据结构中用作结点的类型名,语法为“struct Node{...};”;结构和类在定义出名称以后,直接用该名称就可以定义对象,C语言中还存在“Node * a”和“Node* &a”。

c语言将数字转换成字符串的方法:1、ascii码操作,在原数字的基础上加“0x30”,语法“数字+0x30”,会存储数字对应的字符ascii码;2、使用itoa(),可以把整型数转换成字符串,语法“itoa(number1,string,数字);”;3、使用sprintf(),可以能够根据指定的需求,格式化内容,存储至指针指向的字符串。

在c语言中,没有开根号运算符,开根号使用的是内置函数“sqrt()”,使用语法“sqrt(数值x)”;例如“sqrt(4)”,就是对4进行平方根运算,结果为2。sqrt()是c语言内置的开根号运算函数,其运算结果是函数变量的算术平方根;该函数既不能运算负数值,也不能输出虚数结果。

C语言数组初始化的三种方式:1、在定义时直接赋值,语法“数据类型 arrayName[index] = {值};”;2、利用for循环初始化,语法“for (int i=0;i<3;i++) {arr[i] = i;}”;3、使用memset()函数初始化,语法“memset(arr, 0, sizeof(int) * 3)”。

c语言合法标识符的要求是:1、标识符只能由字母(A~Z, a~z)、数字(0~9)和下划线(_)组成;2、第一个字符必须是字母或下划线,不能是数字;3、标识符中的大小写字母是有区别的,代表不同含义;4、标识符不能是关键字。

c语言编译后生成“.OBJ”的二进制文件(目标文件)。在C语言中,源程序(.c文件)经过编译程序编译之后,会生成一个后缀为“.OBJ”的二进制文件(称为目标文件);最后还要由称为“连接程序”(Link)的软件,把此“.OBJ”文件与c语言提供的各种库函数连接在一起,生成一个后缀“.EXE”的可执行文件。

c语言计算n的阶乘的方法:1、通过for循环计算阶乘,代码如“for (i = 1; i <= n; i++){fact *= i;}”;2、通过while循环计算阶乘,代码如“while (i <= n){fact *= i;i++;}”;3、通过递归方式计算阶乘,代码如“ int Fact(int n){int res = n;if (n > 1)res...”。


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

SublimeText3 Chinese version
Chinese version, very easy to use

WebStorm Mac version
Useful JavaScript development tools

Zend Studio 13.0.1
Powerful PHP integrated development environment

SublimeText3 Linux new version
SublimeText3 Linux latest version

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.
