Home >Backend Development >C++ >How to use C++ for high-performance image tracking and target detection?
How to use C for high-performance image tracking and target detection?
Abstract: With the rapid development of artificial intelligence and computer vision technology, image tracking and target detection have become important research areas. This article will introduce how to achieve high-performance image tracking and target detection by using C language and some open source libraries, and provide code examples.
The following is a sample code that uses the OpenCV library to implement image tracking based on the optical flow method:
int main () {
cv::VideoCapture video("input.mp4"); cv::Mat frame, gray, prevGray, flow, colorFlow; cv::TermCriteria termcrit(cv::TermCriteria::COUNT | cv::TermCriteria::EPS, 20, 0.03); cv::Point2f prevPoint, currPoint; while (true) { video >> frame; if (frame.empty()) { break; } cv::cvtColor(frame, gray, cv::COLOR_BGR2GRAY); if (prevGray.empty()) { gray.copyTo(prevGray); } cv::calcOpticalFlowFarneback(prevGray, gray, flow, 0.5, 3, 15, 3, 5, 1.2, 0); cv::cvtColor(prevGray, colorFlow, cv::COLOR_GRAY2BGR); for (int y = 0; y < frame.rows; y += 10) { for (int x = 0; x < frame.cols; x += 10) { const cv::Point2f& flowAtXY = flow.at<cv::Point2f>(y, x); cv::line(colorFlow, cv::Point(x, y), cv::Point(x + flowAtXY.x, y + flowAtXY.y), cv::Scalar(0, 255, 0)); cv::circle(colorFlow, cv::Point(x, y), 1, cv::Scalar(0, 0, 255), -1); } } cv::imshow("Optical Flow", colorFlow); char key = cv::waitKey(30); if (key == 27) { break; } std::swap(prevGray, gray); } return 0;
}
The following is a sample code that uses the TensorFlow library to implement target detection:
int main() {
std::string modelPath = "model.pb"; std::string imagePath = "input.jpg"; tensorflow::GraphDef graphDef; tensorflow::ReadBinaryProto(tensorflow::Env::Default(), modelPath, &graphDef); tensorflow::SessionOptions sessionOptions; tensorflow::Session* session; tensorflow::NewSession(sessionOptions, &session); session->Create(graphDef); tensorflow::Scope root = tensorflow::Scope::NewRootScope(); tensorflow::string inputName = "input"; tensorflow::string outputName = "output"; tensorflow::ops::Placeholder inputPlaceholder(root, tensorflow::DT_FLOAT); tensorflow::ops::ResizeBilinear resizeBilinear(root, inputPlaceholder, {224, 224}); tensorflow::ops::Cast cast(root, resizeBilinear, tensorflow::DT_UINT8); tensorflow::ops::Div normalize(root, cast, 255.0f); tensorflow::ops::Sub meanSubtract(root, normalize, {123.68f, 116.779f, 103.939f}); tensorflow::ops::Floor floor(root, meanSubtract); std::vector<float> inputData; // 需要根据模型的输入层大小进行填充 tensorflow::FeedItem inputItem(inputName, tensorflow::Tensor(tensorflow::DT_FLOAT, {inputData.size(), 224, 224, 3}), inputData.data()); std::vector<tensorflow::Tensor> outputs; session->Run({inputItem}, {outputName}, {}, &outputs); tensorflow::Tensor outputTensor = outputs[0]; tensorflow::TTypes<float>::Flat outputFlat = outputTensor.flat<float>(); // 处理输出结果 return 0;
}
Conclusion:
This article introduces how to use C language and some open source libraries to achieve high-performance image tracking and target detection. By using the OpenCV library and some common image tracking algorithms, we can accurately track the position and movement of the target in the video. By using the TensorFlow library and a trained model, we can detect and locate specific objects in images. I hope this article will help readers achieve high-performance image tracking and target detection in practical applications.
References:
[1] OpenCV documentation: https://docs.opencv.org/
[2] TensorFlow documentation: https://www.tensorflow.org/
The above is the detailed content of How to use C++ for high-performance image tracking and target detection?. For more information, please follow other related articles on the PHP Chinese website!