Flow API corresponds to the Reactive Streams specification in Java 9, which is a de facto standard. It contains a minimal set of interfaces that capture the core of asynchronous publishing and subscription.
The following are the key interfaces of Flow API:
1) Flow.Publisher: It generates items for subscribers to consume, and it contains only one method: subscribe(Subscriber), whose purpose should be obvious.
Syntax
<strong>void subscribe(Flow.Subscriber<? super T><!--? super T--> subscriber)</strong>
2) Flow.Subscriber: It subscribes to publishers (usually only one) to receive items (via method onNext(T)), error messages (onError(Throwable)), or a signal that no more items are to be expected (onComplete()). Before any of those things happen, the publisher calls onSubscription(Subscription) method.
Syntax
<strong>void onSubscribe(Flow.Subscription subscription) void onNext(T item) void onError(Throwable throwable) void onComplete()</strong>
3) Flow.Subscription: The connection between a single publisher and a single subscriber. The subscriber can use it to request more items (request (long)) or break the connection (cancel()).
Syntax
<strong>void request(long n) void cancel()</strong>
Flow API execution steps:
- First, we need to create a Publisher and a Subscriber.
- Use Publisher::subscribe to subscribe to Subscriber.
- Publisher creates a Subscription and calls Subscriber::onSubscription so that Subscriber can store the subscription.
- At a certain moment, Subscriber calls Subscription::request to request a certain number of items.
- Publisher passes items to Subscriber by calling Subscriber::onNext. It will not publish more than the requested number of items.
- Publisher may encounter a problem at some point and call Subscriber::onComplete or Subscriber::onError respectively.
- Subscriber can request more items at intervals or disconnect by calling Subscription::cancel.
The above is the detailed content of What are the steps to implement Flow API in Java 9?. For more information, please follow other related articles on the PHP Chinese website!

JVM handles operating system API differences through JavaNativeInterface (JNI) and Java standard library: 1. JNI allows Java code to call local code and directly interact with the operating system API. 2. The Java standard library provides a unified API, which is internally mapped to different operating system APIs to ensure that the code runs across platforms.

modularitydoesnotdirectlyaffectJava'splatformindependence.Java'splatformindependenceismaintainedbytheJVM,butmodularityinfluencesapplicationstructureandmanagement,indirectlyimpactingplatformindependence.1)Deploymentanddistributionbecomemoreefficientwi

BytecodeinJavaistheintermediaterepresentationthatenablesplatformindependence.1)Javacodeiscompiledintobytecodestoredin.classfiles.2)TheJVMinterpretsorcompilesthisbytecodeintomachinecodeatruntime,allowingthesamebytecodetorunonanydevicewithaJVM,thusfulf

JavaachievesplatformindependencethroughtheJavaVirtualMachine(JVM),whichexecutesbytecodeonanydevicewithaJVM.1)Javacodeiscompiledintobytecode.2)TheJVMinterpretsandexecutesthisbytecodeintomachine-specificinstructions,allowingthesamecodetorunondifferentp

Platform independence in JavaGUI development faces challenges, but can be dealt with by using Swing, JavaFX, unifying appearance, performance optimization, third-party libraries and cross-platform testing. JavaGUI development relies on AWT and Swing, which aims to provide cross-platform consistency, but the actual effect varies from operating system to operating system. Solutions include: 1) using Swing and JavaFX as GUI toolkits; 2) Unify the appearance through UIManager.setLookAndFeel(); 3) Optimize performance to suit different platforms; 4) using third-party libraries such as ApachePivot or SWT; 5) conduct cross-platform testing to ensure consistency.

Javadevelopmentisnotentirelyplatform-independentduetoseveralfactors.1)JVMvariationsaffectperformanceandbehavioracrossdifferentOS.2)NativelibrariesviaJNIintroduceplatform-specificissues.3)Filepathsandsystempropertiesdifferbetweenplatforms.4)GUIapplica

Java code will have performance differences when running on different platforms. 1) The implementation and optimization strategies of JVM are different, such as OracleJDK and OpenJDK. 2) The characteristics of the operating system, such as memory management and thread scheduling, will also affect performance. 3) Performance can be improved by selecting the appropriate JVM, adjusting JVM parameters and code optimization.

Java'splatformindependencehaslimitationsincludingperformanceoverhead,versioncompatibilityissues,challengeswithnativelibraryintegration,platform-specificfeatures,andJVMinstallation/maintenance.Thesefactorscomplicatethe"writeonce,runanywhere"


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

WebStorm Mac version
Useful JavaScript development tools

SublimeText3 Chinese version
Chinese version, very easy to use
