Home  >  Article  >  Backend Development  >  How to deal with data tampering in C++ big data development?

How to deal with data tampering in C++ big data development?

PHPz
PHPzOriginal
2023-08-25 18:01:491290browse

How to deal with data tampering in C++ big data development?

How to deal with the problem of data tampering in C big data development?

Introduction:
In today's information age, the security and integrity of data are important to all parties. Industry applications are very critical. Especially in big data development, the problem of data tampering has become increasingly prominent. In order to ensure the credibility of the data, we need to take a series of measures to prevent data tampering. This article will give some suggestions for dealing with data tampering problems in C big data development from both theoretical and practical aspects.

1. Theoretical basis

  1. Data integrity verification: Verify the integrity of the data by testing the data checksum and other methods. Checksum is a simple verification method. Common algorithms include MD5 and SHA-1.
  2. Digital signature technology: Use asymmetric key algorithms to sign and verify data to ensure that the source of the data is trustworthy. Common algorithms include RSA, DSA, etc.
  3. Data encryption: Encrypt data to prevent data from being tampered with during transmission. Common encryption algorithms include DES, AES, etc.
  4. Data access control: Control access to data, and set permissions and roles to limit data modification permissions. Access control models such as RBAC and ABAC can be used.

2. Practical method

  1. Use hash checksum
    The hash (hash) function is a way to map data of any length into a fixed length function of the data. It is one-way and irreversible. For the same input, the output hash value is always the same, but the original data cannot be restored from the hash value. In big data development, we can use hash checksums to verify data integrity.

The following is a C sample code:

#include <iostream>
#include <iomanip>
#include <openssl/sha.h>
#include <string>

std::string calculateChecksum(const std::string& data)
{
    unsigned char hash[SHA256_DIGEST_LENGTH];
    SHA256_CTX sha256;
    SHA256_Init(&sha256);
    SHA256_Update(&sha256, data.c_str(), data.length());
    SHA256_Final(hash, &sha256);

    std::stringstream ss;
    for (int i = 0; i < SHA256_DIGEST_LENGTH; i++)
    {
        ss << std::hex << std::setw(2) << std::setfill('0') << (int)hash[i];
    }

    return ss.str();
}

int main()
{
    std::string data = "Hello, world!";
    std::string checksum = calculateChecksum(data);
    std::cout << "Checksum: " << checksum << std::endl;

    return 0;
}
  1. Using digital signature technology
    Digital signature technology can solve the problem of trusted source of data. In C development, we can use the functions provided by the Crypto library to implement digital signatures.

The following is a sample code for digital signature using RSA algorithm:

#include <iostream>
#include <string>
#include <cryptopp/rsa.h>
#include <cryptopp/osrng.h>
#include <cryptopp/base64.h>

std::string generateRSAKey()
{
    CryptoPP::AutoSeededRandomPool rng;
    CryptoPP::RSA::PrivateKey privateKey;
    privateKey.GenerateRandomWithKeySize(rng, 2048);
    CryptoPP::Base64Encoder privateKeyEncoder;

    privateKey.DEREncode(privateKeyEncoder);
    privateKeyEncoder.MessageEnd();
  
    std::string encodedPrivateKey;
    CryptoPP::word64 size = privateKeyEncoder.MaxRetrievable();
    if(size)
    {
        encodedPrivateKey.resize(size);
        privateKeyEncoder.Get((CryptoPP::byte*)&encodedPrivateKey[0], size);
    }

    return encodedPrivateKey;
}

std::string signData(const std::string& privateKey, const std::string& data)
{
    CryptoPP::AutoSeededRandomPool rng;
    CryptoPP::RSA::PrivateKey privateKey;

    std::string privateKeyDecoded;
    CryptoPP::Base64Decoder privateKeyDecoder;
    privateKeyDecoder.Put((CryptoPP::byte*)privateKey.data(), privateKey.size());
    privateKeyDecoder.MessageEnd();

    privateKeyDecoded.resize(privateKeyDecoder.MaxRetrievable());
    privateKeyDecoder.Get((CryptoPP::byte*)&privateKeyDecoded[0], privateKeyDecoded.size());

    privateKey.BERDecode(CryptoPP::StringSource(privateKeyDecoded, true).Ref());

    CryptoPP::RSASSA_PKCS1v15_SHA_Signer signer(privateKey);
    CryptoPP::RSASSA_PKCS1v15_SHA_Signer::Signer signer(rng, signer);

    size_t length = signer.MaxSignatureLength();

    std::string signature;
    signature.resize(length);

    CryptoPP::ArraySink signatureSink((CryptoPP::byte*)&signature[0], length);
    signer.SignMessage(rng, (const CryptoPP::byte*)data.data(), data.size(), signatureSink);

    signature.resize(signatureSink.TotalPutLength());
    return signature;
}

int main()
{
    std::string privateKey = generateRSAKey();
    std::string data = "Hello, world!";
    std::string signature = signData(privateKey, data);

    std::cout << "Signature: " << signature << std::endl;

    return 0;
}

Summary:
In view of the problem of data tampering in C big data development, we can solve it in theory Measures such as data integrity verification, digital signature technology, data encryption and data access control are adopted to prevent data tampering. In practice, we can use hash checksums and digital signature libraries to implement the corresponding functions. Through the correct verification and identification of data, we can enhance the security and integrity of data and ensure the credibility and reliability of data in big data development.

The above is the detailed content of How to deal with data tampering in C++ big data development?. For more information, please follow other related articles on the PHP Chinese website!

Statement:
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Related articles

See more