Solution to Java multi-thread synchronization exception (ThreadSyncException)
Solution to Java multi-thread synchronization exception (ThreadSyncException)
In Java, multi-threading is a common concurrent programming method, but it also brings faced some challenges. One of them is the multi-thread synchronization problem. When multiple threads access shared resources at the same time, data inconsistency or wrong execution order may occur. In order to solve these problems, we need to take some measures to ensure synchronization and sequential execution between threads. This article will introduce some solutions to solve Java multi-thread synchronization exceptions, and attach code examples.
- Use the synchronized keyword
The synchronized keyword is the most basic synchronization mechanism provided by Java and can be used to modify methods and code blocks. When a thread executes synchronized code, other threads need to wait for the thread to complete execution before continuing. This ensures that only one thread can access shared resources at the same time, thereby avoiding data inconsistency problems.
The following is an example of using the synchronized keyword to solve multi-thread synchronization problems:
class Counter { private int count = 0; public synchronized void increment() { count++; } public void getCount() { System.out.println("Count: " + count); } } class MyThread extends Thread { private Counter counter; public MyThread(Counter counter) { this.counter = counter; } public void run() { counter.increment(); } } public class Main { public static void main(String[] args) { Counter counter = new Counter(); MyThread thread1 = new MyThread(counter); MyThread thread2 = new MyThread(counter); thread1.start(); thread2.start(); try { thread1.join(); thread2.join(); } catch (InterruptedException e) { e.printStackTrace(); } counter.getCount(); } }
In the above code, the Counter class represents a counter, and the increment method is modified with the synchronized keyword. Make sure that only one thread can execute this method at a time. The MyThread class represents a thread that increments the counter by calling the counter's increment method. Create two MyThread objects in the Main class and call their start method to start the thread. By using the join method, wait for the two threads to finish executing before printing the counter value.
- Using Lock and Condition interfaces
In addition to the synchronized keyword, Java also provides more flexible Lock and Condition interfaces to solve multi-thread synchronization problems. Compared with the synchronized keyword, the Lock and Condition interfaces provide more fine-grained control and can flexibly control the waiting and waking up of threads.
The following is an example of using the Lock and Condition interfaces to solve multi-thread synchronization problems:
import java.util.concurrent.locks.Condition; import java.util.concurrent.locks.Lock; import java.util.concurrent.locks.ReentrantLock; class Counter { private int count = 0; private Lock lock = new ReentrantLock(); private Condition condition = lock.newCondition(); public void increment() { lock.lock(); try { count++; condition.signalAll(); } finally { lock.unlock(); } } public void getCount() { System.out.println("Count: " + count); } } class MyThread extends Thread { private Counter counter; public MyThread(Counter counter) { this.counter = counter; } public void run() { counter.increment(); } } public class Main { public static void main(String[] args) { Counter counter = new Counter(); MyThread thread1 = new MyThread(counter); MyThread thread2 = new MyThread(counter); thread1.start(); thread2.start(); try { thread1.join(); thread2.join(); } catch (InterruptedException e) { e.printStackTrace(); } counter.getCount(); } }
In the above code, the Counter class uses the ReentrantLock and Condition interfaces to implement the counter synchronization control. The increment method first acquires the lock, then increments the counter value, and wakes up the waiting thread through condition.signalAll(). The implementation in MyThread class and Main class is the same as in the above example.
By using the Lock and Condition interfaces, we can more flexibly control the waiting and waking up of threads, thereby providing more fine-grained synchronization control.
Summary:
Java multi-thread synchronization exception is a common problem in concurrent programming, which can be solved by using the synchronized keyword, Lock and Condition interfaces and other means. This article provides code examples of these solutions, hoping to help readers understand synchronization issues in concurrent programming. In actual development, it is crucial to choose an appropriate synchronization mechanism based on specific needs and scenarios.
The above is the detailed content of Solution to Java multi-thread synchronization exception (ThreadSyncException). For more information, please follow other related articles on the PHP Chinese website!

JVM handles operating system API differences through JavaNativeInterface (JNI) and Java standard library: 1. JNI allows Java code to call local code and directly interact with the operating system API. 2. The Java standard library provides a unified API, which is internally mapped to different operating system APIs to ensure that the code runs across platforms.

modularitydoesnotdirectlyaffectJava'splatformindependence.Java'splatformindependenceismaintainedbytheJVM,butmodularityinfluencesapplicationstructureandmanagement,indirectlyimpactingplatformindependence.1)Deploymentanddistributionbecomemoreefficientwi

BytecodeinJavaistheintermediaterepresentationthatenablesplatformindependence.1)Javacodeiscompiledintobytecodestoredin.classfiles.2)TheJVMinterpretsorcompilesthisbytecodeintomachinecodeatruntime,allowingthesamebytecodetorunonanydevicewithaJVM,thusfulf

JavaachievesplatformindependencethroughtheJavaVirtualMachine(JVM),whichexecutesbytecodeonanydevicewithaJVM.1)Javacodeiscompiledintobytecode.2)TheJVMinterpretsandexecutesthisbytecodeintomachine-specificinstructions,allowingthesamecodetorunondifferentp

Platform independence in JavaGUI development faces challenges, but can be dealt with by using Swing, JavaFX, unifying appearance, performance optimization, third-party libraries and cross-platform testing. JavaGUI development relies on AWT and Swing, which aims to provide cross-platform consistency, but the actual effect varies from operating system to operating system. Solutions include: 1) using Swing and JavaFX as GUI toolkits; 2) Unify the appearance through UIManager.setLookAndFeel(); 3) Optimize performance to suit different platforms; 4) using third-party libraries such as ApachePivot or SWT; 5) conduct cross-platform testing to ensure consistency.

Javadevelopmentisnotentirelyplatform-independentduetoseveralfactors.1)JVMvariationsaffectperformanceandbehavioracrossdifferentOS.2)NativelibrariesviaJNIintroduceplatform-specificissues.3)Filepathsandsystempropertiesdifferbetweenplatforms.4)GUIapplica

Java code will have performance differences when running on different platforms. 1) The implementation and optimization strategies of JVM are different, such as OracleJDK and OpenJDK. 2) The characteristics of the operating system, such as memory management and thread scheduling, will also affect performance. 3) Performance can be improved by selecting the appropriate JVM, adjusting JVM parameters and code optimization.

Java'splatformindependencehaslimitationsincludingperformanceoverhead,versioncompatibilityissues,challengeswithnativelibraryintegration,platform-specificfeatures,andJVMinstallation/maintenance.Thesefactorscomplicatethe"writeonce,runanywhere"


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.
