


How to use Golang to perform color histogram and binarization processing on images
With the widespread application of digital image processing, image processing and analysis have also become Hot topics in computer vision. Among them, color histogram and binarization are two common and important image processing methods. This article will introduce how to use Golang to perform color histogram and binarization processing on images, and comes with code examples.
The color histogram is a statistics of the color frequency of pixels in an image. Histogram analysis can be used in applications such as image enhancement, image retrieval, and image classification. Here is a sample code that uses Golang to calculate a color histogram:
package main import ( "fmt" "image" "image/color" "log" "os" ) func main() { imgFile, err := os.Open("test.jpg") // 读取图像文件 if err != nil { log.Fatal(err) } defer imgFile.Close() img, _, err := image.Decode(imgFile) // 解码图像 if err != nil { log.Fatal(err) } bounds := img.Bounds() histogram := make(map[color.Color]int) // 创建颜色直方图 for y := bounds.Min.Y; y < bounds.Max.Y; y++ { for x := bounds.Min.X; x < bounds.Max.X; x++ { c := img.At(x, y) histogram[c]++ } } for c, count := range histogram { fmt.Printf("颜色: %v,频率: %d ", c, count) } }
The above code first opens and decodes the image file, and then creates a color histogram. By traversing each pixel and counting the frequency of color occurrences, a color histogram of an image is finally obtained. Here we directly use the image.Decode
function in the Golang official library image
to decode the image. You can choose other image processing libraries according to your needs.
Binarization is the conversion of an image into an image with only two colors, usually black and white. This process can simplify complex images and also extract key information in the image. Here is a sample code that uses Golang to binarize an image:
package main import ( "image" "image/color" "log" "os" ) func main() { imgFile, err := os.Open("test.jpg") // 读取图像文件 if err != nil { log.Fatal(err) } defer imgFile.Close() img, _, err := image.Decode(imgFile) // 解码图像 if err != nil { log.Fatal(err) } bounds := img.Bounds() binaryImg := image.NewGray(bounds) // 创建一个新的灰度图像 for y := bounds.Min.Y; y < bounds.Max.Y; y++ { for x := bounds.Min.X; x < bounds.Max.X; x++ { c := img.At(x, y) gray := color.GrayModel.Convert(c).(color.Gray) if gray.Y >= 128 { binaryImg.SetGray(x, y, color.White) // 大于等于128的像素点设为白色 } else { binaryImg.SetGray(x, y, color.Black) // 小于128的像素点设为黑色 } } } binaryFile, err := os.Create("binary.jpg") // 创建输出文件 if err != nil { log.Fatal(err) } defer binaryFile.Close() err = jpeg.Encode(binaryFile, binaryImg, &jpeg.Options{Quality: 100}) // 编码二值化图像 if err != nil { log.Fatal(err) } }
The above code first opens and decodes the image file, and then creates a new grayscale image. By traversing each pixel, the gray value of the pixel is compared with a set threshold, and black or white is selected based on the threshold. Finally, the binarized image is saved to a file. Similarly, the image.Decode
function in the Golang official library image
is used here to decode the image. You can choose other image processing libraries according to your needs.
Through the above two examples, you can easily use Golang to perform color histogram and binarization processing on images. These image processing methods are widely used in the fields of computer vision and image analysis and can help us better understand and process image data. At the same time, Golang provides a wealth of image processing libraries and functions, which provides great convenience for our development work.
The above is the detailed content of How to use Golang to perform color histogram and binarization processing on images. For more information, please follow other related articles on the PHP Chinese website!

go语言有缩进。在go语言中,缩进直接使用gofmt工具格式化即可(gofmt使用tab进行缩进);gofmt工具会以标准样式的缩进和垂直对齐方式对源代码进行格式化,甚至必要情况下注释也会重新格式化。

go语言叫go的原因:想表达这门语言的运行速度、开发速度、学习速度(develop)都像gopher一样快。gopher是一种生活在加拿大的小动物,go的吉祥物就是这个小动物,它的中文名叫做囊地鼠,它们最大的特点就是挖洞速度特别快,当然可能不止是挖洞啦。

本篇文章带大家了解一下golang 的几种常用的基本数据类型,如整型,浮点型,字符,字符串,布尔型等,并介绍了一些常用的类型转换操作。

是,TiDB采用go语言编写。TiDB是一个分布式NewSQL数据库;它支持水平弹性扩展、ACID事务、标准SQL、MySQL语法和MySQL协议,具有数据强一致的高可用特性。TiDB架构中的PD储存了集群的元信息,如key在哪个TiKV节点;PD还负责集群的负载均衡以及数据分片等。PD通过内嵌etcd来支持数据分布和容错;PD采用go语言编写。

go语言需要编译。Go语言是编译型的静态语言,是一门需要编译才能运行的编程语言,也就说Go语言程序在运行之前需要通过编译器生成二进制机器码(二进制的可执行文件),随后二进制文件才能在目标机器上运行。

在写 Go 的过程中经常对比这两种语言的特性,踩了不少坑,也发现了不少有意思的地方,下面本篇就来聊聊 Go 自带的 HttpClient 的超时机制,希望对大家有所帮助。

删除map元素的两种方法:1、使用delete()函数从map中删除指定键值对,语法“delete(map, 键名)”;2、重新创建一个新的map对象,可以清空map中的所有元素,语法“var mapname map[keytype]valuetype”。


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

WebStorm Mac version
Useful JavaScript development tools

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software
