Home >Backend Development >Python Tutorial >Top ten sorting algorithms that programmers must master (Part 2)
Sort algorithmIt can be said that every programmer must have it After mastering, it is necessary to understand their principles and implementation.The following is an introduction to the Python implementation of the ten most commonly used sorting algorithms to facilitate your learning. .
01 Bubble sort-exchange sort02 Quick sort-exchange sort
03 Selection sort - selection class sorting 04 Heap sort - selection class sorting
06 Hill Sorting - Insertion Class Sorting
07 Merge sort - merge sort sort
##08 Counting sorting - distribution sorting 09 Radix sorting - distribution sorting 10 Bucket sorting - distribution Class sorting
(gap is called the step size) and divide the elements to be sorted into several Group subsequence, all records whose distance is a multiple of gap are placed in the same group
'''希尔排序''' def Shell_Sort(arr): # 设定步长,注意类型 step = int(len(arr) / 2) while step > 0: for i in range(step, len(arr)): # 类似插入排序, 当前值与指定步长之前的值比较, 符合条件则交换位置 while i >= step and arr[i - step] > arr[i]: arr[i], arr[i - step] = arr[i - step], arr[i] i -= step step = int(step / 2) return arr arr = [29, 63, 41, 5, 62, 66, 57, 34, 94, 22] result = Shell_Sort(arr) print('result list: ', result) # result list: [5, 22, 29, 34, 41, 57, 62, 63, 66, 94]
Apply for space so that its size is the sum of the two sorted sequences. This space is used to store the merged The sequence
positions are the starting positions of the two sorted sequences
, select the relatively small element and put it into the merge space, and move the index to Next position
exceeds the end of the sequence
'''归并排序'''def Merge(left, right): arr = [] i = j = 0 while j < len(left) and i < len(right): if left[j] < right[i]: arr.append(left[j]) j += 1 else: arr.append(right[i]) i += 1 if j == len(left): # right遍历完 for k in right[i:]: arr.append(k) else: # left遍历完 for k in left[j:]: arr.append(k) return arr def Merge_Sort(arr): # 递归结束条件 if len(arr) <= 1: return arr # 二分 middle = len(arr) // 2 left = Merge_Sort(arr[:middle]) right = Merge_Sort(arr[middle:]) # 合并 return Merge(left, right) arr = [27, 70, 34, 65, 9, 22, 47, 68, 21, 18] result = Merge_Sort(arr) print('result list: ', result) # result list: [9, 18, 21, 22, 27, 34, 47, 65, 68, 70]
找出待排序的数组中最大和最小的元素
统计数组中每个值为i的元素出现的次数,存入数组C的第i项
对所有的计数累加(从C中的第一个元素开始,每一项和前一项相加)
反向填充目标数组:将每个元素i放在新数组的第C(i)项,每放一个元素就将C(i)减去1
'''计数排序''' def Count_Sort(arr): max_num = max(arr) min_num = min(arr) count_num = max_num - min_num + 1 count_arr = [0 for i in range(count_num)] res = [0 for i in range(len(arr))] # 统计数字出现的次数 for i in arr: count_arr[i - min_num] += 1 # 统计前面有几个比自己小的数 for j in range(1, count_num): count_arr[j] = count_arr[j] + count_arr[j - 1] # 遍历重组 for k in range(len(arr)): res[count_arr[arr[k] - min_num] - 1] = arr[k] count_arr[arr[k] - min_num] -= 1 return res arr = [5, 10, 76, 55, 13, 79, 5, 49, 51, 65, 30, 5] result = Count_Sort(arr) print('result list: ', result) # result list: [5, 5, 5, 10, 13, 30, 49, 51, 55, 65, 76, 79]
根据个位数的数值,遍历列表将它们分配至编号0到9的桶子中
将这些桶子中的数值重新串接起来
根据十位数的数值,遍历列表将它们分配至编号0到9的桶子中
再将这些桶子中的数值重新串接起来
'''基数排序''' def Radix_Sort(arr): max_num = max(arr) place = 0 while 10 ** place <= max_num: # 创建桶 buckets = [[] for _ in range(10)] # 分桶 for item in arr: pos = item // 10 ** place % 10 buckets[pos].append(item) j = 0 for k in range(10): for num in buckets[k]: arr[j] = num j += 1 place += 1 return arr arr = [31, 80, 42, 47, 35, 26, 10, 5, 51, 53] result = Radix_Sort(arr) print('result list: ', result) # result list: [5, 10, 26, 31, 35, 42, 47, 51, 53, 80]
计算有限桶的数量
逐个桶内部排序
遍历每个桶,进行合并
'''桶排序''' def Bucket_Sort(arr): num = max(arr) # 列表置零 pre_lst = [0] * num result = [] for data in arr: pre_lst[data - 1] += 1 i = 0 while i < len(pre_lst): # 遍历生成的列表,从小到大 j = 0 while j < pre_lst[i]: result.append(i + 1) j += 1 i += 1 return result arr = [26, 53, 83, 86, 5, 46, 5, 72, 21, 4, 75] result = Bucket_Sort(arr) print('result list: ', result) # result list: [4, 5, 5, 21, 26, 46, 53, 72, 75, 83, 86]
The above is the detailed content of Top ten sorting algorithms that programmers must master (Part 2). For more information, please follow other related articles on the PHP Chinese website!