Home > Article > Backend Development > 5 Pandas data merging skills that Alibaba’s data analyst with an annual salary of 700,000 must know
Not long ago, a friend in our technical exchange group mentioned that he was recently interviewing for the data position of Alibaba 700,000 General Contractor, and the other party asked Pandas
5
data merging functions, but he only answered 2
.
So, which five are they? Today, we will take you to find out!
Directory:
1. concat
2. append
3. merge
4. join
5. combine
Summary
1. concat
##concat is a function specifically used for data connection merging in
pandas. It is very powerful. Supports
vertical merge and horizontal merge. The default is vertical merge, which can be set through parameters.
pd.concat( objs: 'Iterable[NDFrame] | Mapping[Hashable, NDFrame]', axis=0, join='outer', ignore_index: 'bool' = False, keys=None, levels=None, names=None, verify_integrity: 'bool' = False, sort: 'bool' = False, copy: 'bool' = True, ) -> 'FrameOrSeriesUnion'In the function method, the meaning of each parameter is as follows:
Next, we Let’s demonstrate the function
objs<span style="font-size: 14px;"></span>
: The data used for connection can Is a list ofDataFrame<span style="font-size: 14px;"></span>
orSeries<span style="font-size: 14px;"></span>
##axis=0
: The connection method, the default is 0 which is vertical connection, optional 1 is horizontal connection<span style="font-size: 14px;"></span>
join='outer'
: Merge method, the default is <span style="font-size: 14px;"></span>
innerwhich is intersection, optional<span style="font-size: 14px;"></span>
outeris the union<span style="font-size: 14px;"></span><p style="font-size: inherit;color: rgb(102, 102, 102);line-height: 1.6 !important;"><code style='padding: 2px 4px;border-radius: 4px;margin-right: 2px;margin-left: 2px;font-family: "Operator Mono", Consolas, Monaco, Menlo, monospace;word-break: break-all;color: rgb(228, 105, 24);background-color: rgb(239, 239, 239);font-size: 0.875em;line-height: 1.6 !important;'><span style="font-size: 14px;">ignore_index</span>
: Whether to retain the original index
<span style="font-size: 14px;">keys=None</span>
: Connection relationship, use the passed value as the first-level index
<span style="font-size: 14px;">levels=None</span>
: Used to construct multi-level index
<span style="font-size: 14px;">names=None</span>
: The name of the index
<span style="font-size: 14px;">verify_integrity</span>
: Check whether the index is duplicated. If it is True, an error will be reported if there is a duplicate index.
<span style="font-size: 14px;">sort</span>
: Merge merge method Next, sort the columns
##copy<span style="font-size: 14px;"></span>
: Whether to deep copy
Basic connection
In [1]: import pandas as pd In [2]: s1 = pd.Series(['a', 'b']) In [3]: s2 = pd.Series(['c', 'd']) In [4]: s1 Out[4]: 0 a 1 b dtype: object In [5]: s2 Out[5]: 0 c 1 d dtype: object In [6]: pd.concat([s1, s2]) Out[6]: 0 a 1 b 0 c 1 d dtype: object In [7]: df1 = pd.DataFrame([['a', 1], ['b', 2]], ...: columns=['letter', 'number']) In [8]: df2 = pd.DataFrame([['c', 3], ['d', 4]], ...: columns=['letter', 'number']) In [9]: pd.concat([df1, df2]) Out[9]: letter number 0 a 1 1 b 2 0 c 3 1 d 4
横向连接
In [10]: pd.concat([df1, df2], axis=1) Out[10]: letter number letter number 0 a 1 c 3 1 b 2 d 4
默认情况下,concat
是取并集,如果两个数据中有个数据没有对应行或列,则会填充为空值NaN
。
合并交集
In [11]: df3 = pd.DataFrame([['c', 3, 'cat'], ['d', 4, 'dog']], ...: columns=['letter', 'number', 'animal']) In [12]: df1 Out[12]: letter number 0 a 1 1 b 2 In [13]: df3 Out[13]: letter number animal 0 c 3 cat 1 d 4 dog In [14]: pd.concat([df1, df3], join='inner') Out[14]: letter number 0 a 1 1 b 2 0 c 3 1 d 4
索引重置(不保留原有索引)
In [15]: pd.concat([df1, df3], join='inner', ignore_index=True) Out[15]: letter number 0 a 1 1 b 2 2 c 3 3 d 4 # 以下方式和上述的输出结果等价 In [16]: pd.concat([df1, df3], join='inner').reset_index(drop=True) Out[16]: letter number 0 a 1 1 b 2 2 c 3 3 d 4
指定索引
In [17]: pd.concat([df1, df3], keys=['df1','df3']) Out[17]: letter number animal df1 0 a 1 NaN 1 b 2 NaN df3 0 c 3 cat 1 d 4 dog In [18]: pd.concat([df1, df3], keys=['df1','df3'], names=['df名称','行ID']) Out[18]: letter number animal df名称 行ID df1 0 a 1 NaN 1 b 2 NaN df3 0 c 3 cat 1 d 4 dog
检测重复
如果索引出现重复,则无法通过检测,会报错
In [19]: pd.concat([df1, df3], verify_integrity=True) Traceback (most recent call last): ... ValueError: Indexes have overlapping values: Int64Index([0, 1], dtype='int64')
合并并集下columns排序
In [21]: pd.concat([df1, df3], sort=True) Out[21]: animal letter number 0 NaN a 1 1 NaN b 2 0 cat c 3 1 dog d 4
DataFrame与Series合并
In [22]: pd.concat([df1, s1]) Out[22]: letter number 0 0 a 1.0 NaN 1 b 2.0 NaN 0 NaN NaN a 1 NaN NaN b In [23]: pd.concat([df1, s1], axis=1) Out[23]: letter number 0 0 a 1 a 1 b 2 b # 新增列一般可选以下两种方式 In [24]: df1.assign(新增列=s1) Out[24]: letter number 新增列 0 a 1 a 1 b 2 b In [25]: df1['新增列'] = s1 In [26]: df1 Out[26]: letter number 新增列 0 a 1 a 1 b 2 b
以上就concat
函数方法的一些功能,相比之下,另外一个函数append
也可以用于数据追加(纵向合并)
2. append
append
主要用于追加数据,是比较简单直接的数据合并方式。
df.append( other, ignore_index: 'bool' = False, verify_integrity: 'bool' = False, sort: 'bool' = False, ) -> 'DataFrame'
在函数方法中,各参数含义如下:
<span style="font-size: 14px;">other</span>
: 用于追加的数据,可以是<span style="font-size: 14px;">DataFrame</span>
或<span style="font-size: 14px;">Series</span>
或组成的列表
<span style="font-size: 14px;">ignore_index</span>
: 是否保留原有的索引
<span style="font-size: 14px;">verify_integrity</span>
: 检测索引是否重复,如果为True则有重复索引会报错
<span style="font-size: 14px;">sort</span>
: 并集合并方式下,对columns排序
接下来,我们就对该函数功能进行演示
基础追加
In [41]: df1.append(df2) Out[41]: letter number 0 a 1 1 b 2 0 c 3 1 d 4 In [42]: df1.append([df1,df2,df3]) Out[42]: letter number animal 0 a 1 NaN 1 b 2 NaN 0 a 1 NaN 1 b 2 NaN 0 c 3 NaN 1 d 4 NaN 0 c 3 cat 1 d 4 dog
columns重置(不保留原有索引)
In [43]: df1.append([df1,df2,df3], ignore_index=True) Out[43]: letter number animal 0 a 1 NaN 1 b 2 NaN 2 a 1 NaN 3 b 2 NaN 4 c 3 NaN 5 d 4 NaN 6 c 3 cat 7 d 4 dog
检测重复
如果索引出现重复,则无法通过检测,会报错
In [44]: df1.append([df1,df2], verify_integrity=True) Traceback (most recent call last): ... ValueError: Indexes have overlapping values: Int64Index([0, 1], dtype='int64')
索引排序
In [46]: df1.append([df1,df2,df3], sort=True) Out[46]: animal letter number 0 NaN a 1 1 NaN b 2 0 NaN a 1 1 NaN b 2 0 NaN c 3 1 NaN d 4 0 cat c 3 1 dog d 4
追加Series
In [49]: s = pd.Series({'letter':'s1','number':9}) In [50]: s Out[50]: letter s1 number 9 dtype: object In [51]: df1.append(s) Traceback (most recent call last): ... TypeError: Can only append a Series if ignore_index=True or if the Series has a name In [53]: df1.append(s, ignore_index=True) Out[53]: letter number 0 a 1 1 b 2 2 s1 9
追加字典
这个在爬虫的时候比较好使,每爬取一条数据就合并到DataFrame
类似数据中存储起来
In [54]: dic = {'letter':'s1','number':9} In [55]: df1.append(dic, ignore_index=True) Out[55]: letter number 0 a 1 1 b 2 2 s1 9
3. merge
merge
函数方法类似SQL
里的join
,可以是pd.merge
或者df.merge
,区别就在于后者待合并的数据是
pd.merge( left: 'DataFrame | Series', right: 'DataFrame | Series', how: 'str' = 'inner', on: 'IndexLabel | None' = None, left_on: 'IndexLabel | None' = None, right_on: 'IndexLabel | None' = None, left_index: 'bool' = False, right_index: 'bool' = False, sort: 'bool' = False, suffixes: 'Suffixes' = ('_x', '_y'), copy: 'bool' = True, indicator: 'bool' = False, validate: 'str | None' = None, ) -> 'DataFrame'
在函数方法中,关键参数含义如下:
<span style="font-size: 14px;">left</span>
: 用于连接的左侧数据
<span style="font-size: 14px;">right</span>
: 用于连接的右侧数据
<span style="font-size: 14px;">how</span>
: 数据连接方式,默认为 inner,可选outer、left和right
<span style="font-size: 14px;">on</span>
: 连接关键字段,左右侧数据中需要都存在,否则就用left_on和right_on
<span style="font-size: 14px;">left_on</span>
: 左侧数据用于连接的关键字段
<span style="font-size: 14px;">right_on</span>
: 右侧数据用于连接的关键字段
<span style="font-size: 14px;">left_index</span>
: True表示左侧索引为连接关键字段
<span style="font-size: 14px;">right_index</span>
: True表示右侧索引为连接关键字段
<span style="font-size: 14px;">suffixes</span>
: 'Suffixes' = ('_x', '_y'),可以自由指定,就是同列名合并后列名显示后缀
<span style="font-size: 14px;">indicator</span>
: 是否显示合并后某行数据的归属来源
接下来,我们就对该函数功能进行演示
基础合并
In [55]: df1 = pd.DataFrame({'key': ['foo', 'bar', 'bal'], ...: 'value2': [1, 2, 3]}) In [56]: df2 = pd.DataFrame({'key': ['foo', 'bar', 'baz'], ...: 'value1': [5, 6, 7]}) In [57]: df1.merge(df2) Out[57]: key value2 value1 0 foo 1 5 1 bar 2 6
其他连接方式
In [58]: df1.merge(df2, how='left') Out[58]: key value2 value1 0 foo 1 5.0 1 bar 2 6.0 2 bal 3 NaN In [59]: df1.merge(df2, how='right') Out[59]: key value2 value1 0 foo 1.0 5 1 bar 2.0 6 2 baz NaN 7 In [60]: df1.merge(df2, how='outer') Out[60]: key value2 value1 0 foo 1.0 5.0 1 bar 2.0 6.0 2 bal 3.0 NaN 3 baz NaN 7.0 In [61]: df1.merge(df2, how='cross') Out[61]: key_x value2 key_y value1 0 foo 1 foo 5 1 foo 1 bar 6 2 foo 1 baz 7 3 bar 2 foo 5 4 bar 2 bar 6 5 bar 2 baz 7 6 bal 3 foo 5 7 bal 3 bar 6 8 bal 3 baz 7
指定连接键
可以指定单个连接键,也可以指定多个连接键
In [62]: df1 = pd.DataFrame({'lkey1': ['foo', 'bar', 'bal'], ...: 'lkey2': ['a', 'b', 'c'], ...: 'value2': [1, 2, 3]}) In [63]: df2 = pd.DataFrame({'rkey1': ['foo', 'bar', 'baz'], ...: 'rkey2': ['a', 'b', 'c'], ...: 'value2': [5, 6, 7]}) In [64]: df1 Out[64]: lkey1 lkey2 value2 0 foo a 1 1 bar b 2 2 bal c 3 In [65]: df2 Out[65]: rkey1 rkey2 value2 0 foo a 5 1 bar b 6 2 baz c 7 In [66]: df1.merge(df2, left_on='lkey1', right_on='rkey1') Out[66]: lkey1 lkey2 value2_x rkey1 rkey2 value2_y 0 foo a 1 foo a 5 1 bar b 2 bar b 6 In [67]: df1.merge(df2, left_on=['lkey1','lkey2'], right_on=['rkey1','rkey2']) Out[67]: lkey1 lkey2 value2_x rkey1 rkey2 value2_y 0 foo a 1 foo a 5 1 bar b 2 bar b 6
指定索引为键
Out[68]: df1.merge(df2, left_index=True, right_index=True) Out[68]: lkey1 lkey2 value2_x rkey1 rkey2 value2_y 0 foo a 1 foo a 5 1 bar b 2 bar b 6 2 bal c 3 baz c 7
设置重复列后缀
In [69]: df1.merge(df2, left_on='lkey1', right_on='rkey1', suffixes=['左','右']) Out[69]: lkey1 lkey2 value2左 rkey1 rkey2 value2右 0 foo a 1 foo a 5 1 bar b 2 bar b 6
连接指示
新增一列用于显示数据来源
In [70]: df1.merge(df2, left_on='lkey1', right_on='rkey1', suffixes=['左','右'], how='outer', ...: indicator=True ...: ) Out[70]: lkey1 lkey2 value2左 rkey1 rkey2 value2右 _merge 0 foo a 1.0 foo a 5.0 both 1 bar b 2.0 bar b 6.0 both 2 bal c 3.0 NaN NaN NaN left_only 3 NaN NaN NaN baz c 7.0 right_only
4. join
join
就有点想append
之于concat
,用于数据合并
df.join( other: 'FrameOrSeriesUnion', on: 'IndexLabel | None' = None, how: 'str' = 'left', lsuffix: 'str' = '', rsuffix: 'str' = '', sort: 'bool' = False, ) -> 'DataFrame'
在函数方法中,关键参数含义如下:
<span style="font-size: 14px;">other</span>
: 用于合并的右侧数据
<span style="font-size: 14px;">on</span>
: 连接关键字段,左右侧数据中需要都存在,否则就用left_on和right_on
<span style="font-size: 14px;">how</span>
: 数据连接方式,默认为 inner,可选outer、left和right
<span style="font-size: 14px;">lsuffix</span>
: 左侧同名列后缀
<span style="font-size: 14px;">rsuffix</span>
:右侧同名列后缀
接下来,我们就对该函数功能进行演示
In [71]: df = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3', 'K4', 'K5'], ...: 'A': ['A0', 'A1', 'A2', 'A3', 'A4', 'A5']}) In [72]: other = pd.DataFrame({'key': ['K0', 'K1', 'K2'], ...: 'B': ['B0', 'B1', 'B2']}) In [73]: df Out[73]: key A 0 K0 A0 1 K1 A1 2 K2 A2 3 K3 A3 4 K4 A4 5 K5 A5 In [74]: other Out[74]: key B 0 K0 B0 1 K1 B1 2 K2 B2 In [75]: df.join(other, on='key') Traceback (most recent call last): ... ValueError: You are trying to merge on object and int64 columns. If you wish to proceed you should use pd.concat
如果想用key关键字, 则需要key是索引。。。
指定key
In [76]: df.set_index('key').join(other.set_index('key')) Out[76]: A B key K0 A0 B0 K1 A1 B1 K2 A2 B2 K3 A3 NaN K4 A4 NaN K5 A5 NaN In [77]: df.join(other.set_index('key'), on='key') Out[77]: key A B 0 K0 A0 B0 1 K1 A1 B1 2 K2 A2 B2 3 K3 A3 NaN 4 K4 A4 NaN 5 K5 A5 NaN
指定重复列后缀
In [78]: df.join(other, lsuffix='_左', rsuffix='右') Out[78]: key_左 A key右 B 0 K0 A0 K0 B0 1 K1 A1 K1 B1 2 K2 A2 K2 B2 3 K3 A3 NaN NaN 4 K4 A4 NaN NaN 5 K5 A5 NaN NaN
其他参数就不多做介绍了,和merge
基本一样。
5. combine
在数据合并的过程中,我们可能需要对对应位置的值进行一定的计算,pandas
提供了combine
和combine_first
函数方法来进行这方面的合作操作。
df.combine( other: 'DataFrame', func, fill_value=None, overwrite: 'bool' = True, ) -> 'DataFrame'
比如,数据合并的时候取单元格最小的值
In [79]: df1 = pd.DataFrame({'A': [0, 0], 'B': [4, 4]}) In [80]: df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]}) In [81]: df1 Out[81]: A B 0 0 4 1 0 4 In [82]: df2 Out[82]: A B 0 1 3 1 1 3 In [83]: take_smaller = lambda s1, s2: s1 if s1.sum() < s2.sum() else s2 In [84]: df1.combine(df2, take_smaller) Out[84]: A B 0 0 3 1 0 3 # 也可以调用numpy的函数 In [85]: import numpy as np In [86]: df1.combine(df2, np.minimum) Out[86]: A B 0 0 3 1 0 3
fill_value填充缺失值
In [87]: df1 = pd.DataFrame({'A': [0, 0], 'B': [None, 4]}) In [87]: df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]}) In [88]: df1 Out[88]: A B 0 0 NaN 1 0 4.0 In [89]: df2 Out[89]: A B 0 1 3 1 1 3 In [90]: df1.combine(df2, take_smaller, fill_value=-88) Out[90]: A B 0 0 -88.0 1 0 4.0
overwrite=False保留
In [91]: df1 = pd.DataFrame({'A': [0, 0], 'B': [4, 4]}) In [92]: df2 = pd.DataFrame({'B': [3, 3], 'C': [-10, 1], }, index=[1, 2]) In [93]: df1 Out[93]: A B 0 0 4 1 0 4 In [94]: df2 Out[94]: B C 1 3 -10 2 3 1 In [95]: df1.combine(df2, take_smaller) Out[95]: A B C 0 NaN NaN NaN 1 NaN 3.0 -10.0 2 NaN 3.0 1.0 # 保留A列原有的值 In [96]: df1.combine(df2, take_smaller, overwrite=False) Out[96]: A B C 0 0.0 NaN NaN 1 0.0 3.0 -10.0 2 NaN 3.0 1.0
另外一个combine_first
df.combine_first(other: 'DataFrame') -> 'DataFrame'
当df中元素为空采用other里的进行替换,结果为并集合并
In [97]: df1 = pd.DataFrame({'A': [None, 0], 'B': [None, 4]}) In [98]: df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]}) In [99]: df1 Out[99]: A B 0 NaN NaN 1 0.0 4.0 In [100]: df2 Out[100]: A B 0 1 3 1 1 3 In [101]: df1.combine_first(df2) Out[101]: A B 0 1.0 3.0 1 0.0 4.0 In [102]: df1 = pd.DataFrame({'A': [None, 0], 'B': [4, None]}) In [103]: df2 = pd.DataFrame({'B': [3, 3], 'C': [1, 1]}, index=[1, 2]) In [104]: df1 Out[104]: A B 0 NaN 4.0 1 0.0 NaN In [105]: df2 Out[105]: B C 1 3 1 2 3 1 In [106]: df1.combine_first(df2) Out[106]: A B C 0 NaN 4.0 NaN 1 0.0 3.0 1.0 2 NaN 3.0 1.0
总结
以上就本次介绍的关于Pandas
数据合并的全部内容,相比之下我们可以发现:
append
is mainly used to append data vertically, which is relatively simple and direct; concat
has the most powerful function , it can not only merge data vertically but also horizontally and support many other condition settings; merge
is mainly used to merge data horizontally, similar to join in SQL Join; join
is relatively simple, used to merge data horizontally, and the conditions are relatively harsh; is more like merging elements and merging data according to certain conditions (function rules).
The above is the detailed content of 5 Pandas data merging skills that Alibaba’s data analyst with an annual salary of 700,000 must know. For more information, please follow other related articles on the PHP Chinese website!