Home > Article > Backend Development > Quick Start: Use Go language functions to implement simple data analysis functions
Quick Start: Use Go language functions to implement simple data analysis functions
Overview:
Data analysis is one of the important skills in modern society. With the advent of the big data era, it has become increasingly important to effectively analyze and extract value from data. As an efficient and concise programming language, Go language has the ability to handle data analysis tasks. This article will introduce how to use Go language functions to implement simple data analysis functions.
package main import ( "bufio" "fmt" "os" "strconv" "strings" ) func importData(filename string) ([]float64, error) { file, err := os.Open(filename) if err != nil { return nil, err } defer file.Close() scanner := bufio.NewScanner(file) var data []float64 for scanner.Scan() { line := scanner.Text() num, err := strconv.ParseFloat(line, 64) if err != nil { return nil, err } data = append(data, num) } return data, nil } func main() { data, err := importData("data.txt") if err != nil { fmt.Println("Failed to import data:", err) return } fmt.Println("Imported data:", data) }
package main import ( "fmt" "math" ) func mean(data []float64) float64 { sum := 0.0 for _, num := range data { sum += num } return sum / float64(len(data)) } func sum(data []float64) float64 { sum := 0.0 for _, num := range data { sum += num } return sum } func max(data []float64) float64 { max := math.Inf(-1) for _, num := range data { if num > max { max = num } } return max } func main() { data := []float64{1.0, 2.0, 3.0, 4.0, 5.0, 6.0} fmt.Println("Mean:", mean(data)) fmt.Println("Sum:", sum(data)) fmt.Println("Max:", max(data)) }
github.com/wcharczuk/go-chart
for data visualization. The following is a simple example using this library to draw a line chart of data: package main import ( "fmt" "github.com/wcharczuk/go-chart" "os" ) func plot(data []float64) { xvalues := make([]float64, len(data)) yvalues := make([]float64, len(data)) for i, num := range data { xvalues[i] = float64(i) yvalues[i] = num } graph := chart.Chart{ Series: []chart.Series{ chart.ContinuousSeries{ XValues: xvalues, YValues: yvalues, }, }, } f, _ := os.Create("plot.png") defer f.Close() graph.Render(chart.PNG, f) } func main() { data := []float64{1.0, 2.0, 3.0, 4.0, 5.0, 6.0} plot(data) fmt.Println("Plot created: plot.png") }
Summary:
This article introduces how to use Go language functions to implement simple data analysis functions. Through the three steps of importing data, processing data and visualizing data, we can quickly get started using Go language for data analysis. Of course, this is just a simple example, and actual applications may involve more complex data processing and more functions. I hope this article can provide some guidance and help for beginners and stimulate everyone's interest and exploration in data analysis.
The above is the detailed content of Quick Start: Use Go language functions to implement simple data analysis functions. For more information, please follow other related articles on the PHP Chinese website!