How to use context to implement request concurrency control in Go
How to use context to implement request concurrency control in Go
Overview:
Concurrency (concurrency) in the Go language is one of its most important features. Using concurrency can significantly improve the performance and responsiveness of your program, especially when making network requests. However, in high-concurrency scenarios, problems can easily arise. For example, too many concurrent requests may lead to resource exhaustion. In order to solve these problems, Go provides the context package to manage the life cycle of requests and implement control of concurrent requests. This article will introduce how to use context to implement request concurrency control in Go.
Use context to create the context of the request:
First, we need to use context to create the context of the request in order to track and control it throughout the life cycle of the request. You can use the WithCancel, WithDeadline, WithTimeout and WithValue functions in the context package to create a context. For example, using the WithCancel function you can create a context that can be canceled:
ctx, cancel := context.WithCancel(context.Background()) defer cancel()
In this example, we use the WithCancel function to create a context that can be canceled, and call the cancel function to release the resources after the request ends.
Control the number of concurrent requests:
In order to control concurrent requests, we can use the goroutine and channel mechanisms of the Go language. We can start multiple goroutines to handle requests and use channels to limit the number of concurrent requests.
func main() { urls := []string{"http://url1.com", "http://url2.com", "http://url3.com", ...} maxConcurrency := 5 sem := make(chan struct{}, maxConcurrency) for _, url := range urls { sem <- struct{}{} go func(url string) { defer func() { <-sem }() makeRequest(url) }(url) } // 等待所有请求完成 for i := 0; i < maxConcurrency; i++ { sem <- struct{}{} } } func makeRequest(url string) { // 创建请求的上下文 ctx, cancel := context.WithCancel(context.Background()) defer cancel() req, err := http.NewRequestWithContext(ctx, "GET", url, nil) if err != nil { log.Printf("Error creating request: %s", err.Error()) return } client := &http.Client{} resp, err := client.Do(req) if err != nil { log.Printf("Error making request: %s", err.Error()) return } defer resp.Body.Close() // 处理响应 // ... }
In the above example, we use goroutine to handle each request. To limit the number of concurrent requests, we create a channel with a buffer and send a value to the channel at the beginning of each goroutine. At the end of the goroutine, we receive a value from the channel to free a slot. By controlling the number of slots in the channel, we can limit the number of concurrent requests.
Use context to implement request timeout control:
Sometimes, we may need to set a timeout for the request to prevent the request from being unable to receive a response for too long. In Go, you can use the context's WithTimeout function to set the request timeout. Here is an example:
func main() { url := "http://url.com" ctx, cancel := context.WithTimeout(context.Background(), time.Second*5) defer cancel() req, err := http.NewRequestWithContext(ctx, "GET", url, nil) if err != nil { log.Printf("Error creating request: %s", err.Error()) return } client := &http.Client{} resp, err := client.Do(req) if err != nil { log.Printf("Error making request: %s", err.Error()) return } defer resp.Body.Close() // 处理响应 // ... }
In this example, we create a context with a 5 second timeout using the WithTimeout function. Before calling the Do method to send the request, we pass this context to the NewRequestWithContext method. If the request does not receive a response for more than 5 seconds, the context will be automatically canceled.
Summary:
In the Go language, you can use context to easily manage the life cycle of requests and control the number of concurrent requests and timeout. By flexibly using mechanisms such as concurrency, channel, and context, we can achieve more efficient and reliable request processing in high-concurrency scenarios.
Note:
Although in this article, we mainly introduce how to use context to implement request concurrency control, for more complex scenarios, such as request retry, cancellation of multiple concurrent requests, etc., we also You can use other functions of context. It is recommended to read the detailed introduction about context in the official Go language documentation to learn more usage and best practices.
The above is the detailed content of How to use context to implement request concurrency control in Go. For more information, please follow other related articles on the PHP Chinese website!

Goimpactsdevelopmentpositivelythroughspeed,efficiency,andsimplicity.1)Speed:Gocompilesquicklyandrunsefficiently,idealforlargeprojects.2)Efficiency:Itscomprehensivestandardlibraryreducesexternaldependencies,enhancingdevelopmentefficiency.3)Simplicity:

C is more suitable for scenarios where direct control of hardware resources and high performance optimization is required, while Golang is more suitable for scenarios where rapid development and high concurrency processing are required. 1.C's advantage lies in its close to hardware characteristics and high optimization capabilities, which are suitable for high-performance needs such as game development. 2.Golang's advantage lies in its concise syntax and natural concurrency support, which is suitable for high concurrency service development.

Golang excels in practical applications and is known for its simplicity, efficiency and concurrency. 1) Concurrent programming is implemented through Goroutines and Channels, 2) Flexible code is written using interfaces and polymorphisms, 3) Simplify network programming with net/http packages, 4) Build efficient concurrent crawlers, 5) Debugging and optimizing through tools and best practices.

The core features of Go include garbage collection, static linking and concurrency support. 1. The concurrency model of Go language realizes efficient concurrent programming through goroutine and channel. 2. Interfaces and polymorphisms are implemented through interface methods, so that different types can be processed in a unified manner. 3. The basic usage demonstrates the efficiency of function definition and call. 4. In advanced usage, slices provide powerful functions of dynamic resizing. 5. Common errors such as race conditions can be detected and resolved through getest-race. 6. Performance optimization Reuse objects through sync.Pool to reduce garbage collection pressure.

Go language performs well in building efficient and scalable systems. Its advantages include: 1. High performance: compiled into machine code, fast running speed; 2. Concurrent programming: simplify multitasking through goroutines and channels; 3. Simplicity: concise syntax, reducing learning and maintenance costs; 4. Cross-platform: supports cross-platform compilation, easy deployment.

Confused about the sorting of SQL query results. In the process of learning SQL, you often encounter some confusing problems. Recently, the author is reading "MICK-SQL Basics"...

The relationship between technology stack convergence and technology selection In software development, the selection and management of technology stacks are a very critical issue. Recently, some readers have proposed...

Golang ...


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

WebStorm Mac version
Useful JavaScript development tools

Notepad++7.3.1
Easy-to-use and free code editor

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.