search
HomeBackend DevelopmentGolangScheduling strategy and performance optimization of Goroutines in Golang concurrent programming

Scheduling strategy and performance optimization of Goroutines in Golang concurrent programming

Abstract: In Golang, Goroutines is one of the core concepts of concurrent programming. This article will introduce the scheduling strategy of Goroutines and how to improve the efficiency of concurrent programs through performance optimization. Articles will contain specific code examples to help readers better understand and apply related concepts and techniques.

1. Introduction

With the improvement of computer processing power and the popularity of multi-core processors, the demand for concurrent programming has gradually increased. As a programming language that supports high concurrency, Golang provides Goroutines, a powerful concurrency mechanism. Goroutines can be regarded as lightweight threads that can be executed concurrently in the program.

2. Scheduling strategy of Goroutines

Golang’s scheduler executes Goroutines according to a certain strategy to achieve concurrency effects. The scheduling strategies of Goroutines can be divided into three types:

  1. Pull-type preemptive scheduling: When a Goroutine encounters a blockage, the scheduler will pause it and allocate the processor to other runnable Goroutines. Once the blocked Goroutine returns to a runnable state, the scheduler will schedule it again.
  2. Non-preemptive voluntary scheduling: Goroutines actively give up the processor during execution so that other Goroutines can execute. In Golang, we can implement voluntary scheduling by calling the runtime.Gosched() function.
  3. System call: When a Goroutine executes a system call, the scheduler will pause the Goroutine and assign the processor to other runnable Goroutines. Once the system call returns, the suspended Goroutine will be scheduled again.

3. Performance Optimization and Scheduling

When writing concurrent programs, reasonable scheduling strategies and performance optimization are the keys to improving program efficiency. Below we will introduce some commonly used performance optimization strategies.

  1. Reduce the number of Goroutines created: Creating too many Goroutines will lead to increased memory overhead and scheduling pressure. Therefore, when writing code, you should try to reduce the number of Goroutines created and make reasonable use of existing Goroutines.
  2. Control the life cycle of Goroutines: In programming, we can reduce the pressure on the scheduler by controlling the life cycle of Goroutines. You can use sync.WaitGroup to wait for all Goroutines to complete their tasks, or use context.Context to cancel the execution of Goroutines.
  3. Reasonable use of concurrency primitives: Golang provides some concurrency primitives, such as locks, condition variables, and channels, to coordinate communication and synchronization between Goroutines. Reasonable use of these primitives can effectively reduce competition and conflicts and improve program performance.

5. Code Example

The following is a simple code example that demonstrates how to use Goroutines for concurrent processing:

package main

import (
    "fmt"
    "time"
)

func main() {
    // 创建一个Goroutine来执行任务1
    go task1()

    // 创建一个Goroutine来执行任务2
    go task2()

    // 主Goroutine等待1秒钟
    time.Sleep(time.Second)
}

func task1() {
    for i := 0; i < 10; i++ {
        fmt.Println("Task 1:", i)
        time.Sleep(time.Millisecond * 500)
    }
}

func task2() {
    for i := 0; i < 10; i++ {
        fmt.Println("Task 2:", i)
        time.Sleep(time.Millisecond * 500)
    }
}

In the above code, we create Two Goroutines are used to execute task 1 and task 2 concurrently. Each task will be looped 10 times, and the task execution time will be simulated through the time.Sleep function. By observing the output results, we can see that Task 1 and Task 2 are executed alternately, achieving the effect of concurrent processing.

6. Summary

This article introduces the scheduling strategy and performance optimization of Goroutines in Golang. When writing concurrent programs, reasonable scheduling strategies and performance optimization are the keys to improving program efficiency. By mastering the scheduling strategies of Goroutines and flexibly using related performance optimization strategies, developers can write efficient, stable and scalable concurrent programs.

Reference:

Golang Concurrency

https://golang.org/doc/effective_go.html#concurrency

The above is the detailed content of Scheduling strategy and performance optimization of Goroutines in Golang concurrent programming. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Golang vs. Python: The Pros and ConsGolang vs. Python: The Pros and ConsApr 21, 2025 am 12:17 AM

Golangisidealforbuildingscalablesystemsduetoitsefficiencyandconcurrency,whilePythonexcelsinquickscriptinganddataanalysisduetoitssimplicityandvastecosystem.Golang'sdesignencouragesclean,readablecodeanditsgoroutinesenableefficientconcurrentoperations,t

Golang and C  : Concurrency vs. Raw SpeedGolang and C : Concurrency vs. Raw SpeedApr 21, 2025 am 12:16 AM

Golang is better than C in concurrency, while C is better than Golang in raw speed. 1) Golang achieves efficient concurrency through goroutine and channel, which is suitable for handling a large number of concurrent tasks. 2)C Through compiler optimization and standard library, it provides high performance close to hardware, suitable for applications that require extreme optimization.

Why Use Golang? Benefits and Advantages ExplainedWhy Use Golang? Benefits and Advantages ExplainedApr 21, 2025 am 12:15 AM

Reasons for choosing Golang include: 1) high concurrency performance, 2) static type system, 3) garbage collection mechanism, 4) rich standard libraries and ecosystems, which make it an ideal choice for developing efficient and reliable software.

Golang vs. C  : Performance and Speed ComparisonGolang vs. C : Performance and Speed ComparisonApr 21, 2025 am 12:13 AM

Golang is suitable for rapid development and concurrent scenarios, and C is suitable for scenarios where extreme performance and low-level control are required. 1) Golang improves performance through garbage collection and concurrency mechanisms, and is suitable for high-concurrency Web service development. 2) C achieves the ultimate performance through manual memory management and compiler optimization, and is suitable for embedded system development.

Is Golang Faster Than C  ? Exploring the LimitsIs Golang Faster Than C ? Exploring the LimitsApr 20, 2025 am 12:19 AM

Golang performs better in compilation time and concurrent processing, while C has more advantages in running speed and memory management. 1.Golang has fast compilation speed and is suitable for rapid development. 2.C runs fast and is suitable for performance-critical applications. 3. Golang is simple and efficient in concurrent processing, suitable for concurrent programming. 4.C Manual memory management provides higher performance, but increases development complexity.

Golang: From Web Services to System ProgrammingGolang: From Web Services to System ProgrammingApr 20, 2025 am 12:18 AM

Golang's application in web services and system programming is mainly reflected in its simplicity, efficiency and concurrency. 1) In web services, Golang supports the creation of high-performance web applications and APIs through powerful HTTP libraries and concurrent processing capabilities. 2) In system programming, Golang uses features close to hardware and compatibility with C language to be suitable for operating system development and embedded systems.

Golang vs. C  : Benchmarks and Real-World PerformanceGolang vs. C : Benchmarks and Real-World PerformanceApr 20, 2025 am 12:18 AM

Golang and C have their own advantages and disadvantages in performance comparison: 1. Golang is suitable for high concurrency and rapid development, but garbage collection may affect performance; 2.C provides higher performance and hardware control, but has high development complexity. When making a choice, you need to consider project requirements and team skills in a comprehensive way.

Golang vs. Python: A Comparative AnalysisGolang vs. Python: A Comparative AnalysisApr 20, 2025 am 12:17 AM

Golang is suitable for high-performance and concurrent programming scenarios, while Python is suitable for rapid development and data processing. 1.Golang emphasizes simplicity and efficiency, and is suitable for back-end services and microservices. 2. Python is known for its concise syntax and rich libraries, suitable for data science and machine learning.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

MantisBT

MantisBT

Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool

WebStorm Mac version

WebStorm Mac version

Useful JavaScript development tools