search
HomeBackend DevelopmentPHP TutorialGenetic algorithm implementation steps in PHP
Genetic algorithm implementation steps in PHPJul 07, 2023 am 11:49 AM
phpgenetic algorithmImplementation steps

Genetic algorithm implementation steps in PHP

Introduction:
Genetic algorithm is an optimization algorithm based on the principle of evolution. By simulating the genetic and evolutionary processes of nature, it can search the solution space of the problem. Find the optimal solution. In PHP, we can use genetic algorithms to solve some optimization problems, such as solving parameter optimization, machine learning, scheduling problems, etc. This article will introduce the implementation steps of genetic algorithm in PHP and provide relevant code examples.

1. Initializing the population
In the genetic algorithm, the population refers to a set of solutions to be optimized. First, we need to define the size of the population and how each individual is encoded. Commonly used encoding methods include binary, integer, floating point, etc. Choose the appropriate encoding method according to the characteristics of the problem. The following is a sample code for initializing the population:

function generateIndividual($chromosome_length) {
    $individual = [];
    for($i = 0; $i < $chromosome_length; $i++){
        $gene = mt_rand(0, 1);
        $individual[] = $gene;
    }
    return $individual;
}

function generatePopulation($population_size, $chromosome_length) {
    $population = [];
    for ($i = 0; $i < $population_size; $i++) {
        $individual = generateIndividual($chromosome_length);
        $population[] = $individual;
    }
    return $population;
}

2. Fitness function
The fitness function is used to evaluate the fitness of each individual in the population, that is, the quality of the solution. According to the characteristics of the optimization problem, the fitness function can be designed so that individuals with high fitness have a higher probability of being selected in selection, crossover and mutation. The following is an example of a simple fitness function:

function fitnessFunction($individual) {
    $fitness = 0;
    foreach ($individual as $gene) {
        $fitness += $gene;
    }
    return $fitness;
}

3. Selection operation
The selection operation refers to selecting some individuals from the population as parents to reproduce the next generation. The goal of the selection operation is to select individuals with high fitness so that excellent genetic information can be passed on to future generations. The selection is usually made using methods such as roulette selection, tournament selection, etc. The following is a simple roulette selection example:

function selection($population, $fitness_values) {
    $total_fitness = array_sum($fitness_values);
    $probabilities = [];
    foreach ($fitness_values as $fitness) {
        $probabilities[] = $fitness / $total_fitness;
    }
    $selected_individuals = [];
    for ($i = 0; $i < count($population); $i++) {
        $random_number = mt_rand() / mt_getrandmax();
        $probability_sum = 0;
        for ($j = 0; $j < $population_size; $j++) {
            $probability_sum += $probabilities[$j];
            if ($random_number < $probability_sum) {
                $selected_individuals[] = $population[$j];
                break;
            }
        }
    }
    return $selected_individuals;
}

4. Crossover operation
The crossover operation refers to selecting some individuals from the parent individuals for gene exchange to produce the next generation of individuals. The goal of crossover operations is to obtain better genetic information by exchanging genes. The following is a simple two-point crossover example:

function crossover($parent1, $parent2) {
    $chromosome_length = count($parent1);
    $crossover_point1 = mt_rand(1, $chromosome_length - 1);
    $crossover_point2 = mt_rand($crossover_point1, $chromosome_length - 1);
    $child1 = array_merge(array_slice($parent2, 0, $crossover_point1),
                        array_slice($parent1, $crossover_point1,
                        $crossover_point2 - $crossover_point1),
                        array_slice($parent2, $crossover_point2));
    $child2 = array_merge(array_slice($parent1, 0, $crossover_point1),
                        array_slice($parent2, $crossover_point1,
                        $crossover_point2 - $crossover_point1),
                        array_slice($parent1, $crossover_point2));
    return [$child1, $child2];
}

5. Mutation operation
Mutation operation refers to randomly mutating the genes of an individual to increase the diversity of the population and avoid falling into a local minimum. Excellent solution. Mutation is usually achieved by randomly selecting gene positions and randomly transforming their values. The following is an example of a simple mutation operation:

function mutation($individual, $mutation_rate) {
    for ($i = 0; $i < count($individual); $i++) {
        $random_number = mt_rand() / mt_getrandmax();
        if ($random_number < $mutation_rate) {
            $individual[$i] = 1 - $individual[$i];
        }
    }
    return $individual;
}

6. Algorithm iteration
The above four operations (selection, crossover, mutation) constitute the basic operation of the genetic algorithm. Through multiple iterations, selection, crossover, and mutation operations are performed to gradually optimize the quality of the solution until the termination condition is met (such as reaching the maximum number of iterations or reaching the optimal solution). The following is an example of the iterative process of a genetic algorithm:

function geneticAlgorithm($population_size, $chromosome_length, $mutation_rate, $max_generations) {
    $population = generatePopulation($population_size, $chromosome_length);
    $generation = 0;
    while ($generation < $max_generations) {
        $fitness_values = [];
        foreach ($population as $individual) {
            $fitness_values[] = fitnessFunction($individual);
        }
        $selected_individuals = selection($population, $fitness_values);
        $next_population = $selected_individuals;
        while (count($next_population) < $population_size) {
            $parent1 = $selected_individuals[mt_rand(0, count($selected_individuals) - 1)];
            $parent2 = $selected_individuals[mt_rand(0, count($selected_individuals) - 1)];
            list($child1, $child2) = crossover($parent1, $parent2);
            $child1 = mutation($child1, $mutation_rate);
            $child2 = mutation($child2, $mutation_rate);
            $next_population[] = $child1;
            $next_population[] = $child2;
        }
        $population = $next_population;
        $generation++;
    }
    // 取得最佳个体
    $fitness_values = [];
    foreach ($population as $individual) {
        $fitness_values[] = fitnessFunction($individual);
    }
    $best_individual_index = array_search(max($fitness_values), $fitness_values);
    $best_individual = $population[$best_individual_index];
    return $best_individual;
}

Conclusion:
This article introduces the implementation steps of the genetic algorithm in PHP and provides relevant code examples. By initializing the population, designing the fitness function, performing selection, crossover and mutation operations, and optimizing the quality of the solution through multiple iterations, we can use genetic algorithms to solve some optimization problems. I hope this article will help you understand and implement genetic algorithms in PHP.

The above is the detailed content of Genetic algorithm implementation steps in PHP. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
php怎么把负数转为正整数php怎么把负数转为正整数Apr 19, 2022 pm 08:59 PM

php把负数转为正整数的方法:1、使用abs()函数将负数转为正数,使用intval()函数对正数取整,转为正整数,语法“intval(abs($number))”;2、利用“~”位运算符将负数取反加一,语法“~$number + 1”。

php怎么实现几秒后执行一个函数php怎么实现几秒后执行一个函数Apr 24, 2022 pm 01:12 PM

实现方法:1、使用“sleep(延迟秒数)”语句,可延迟执行函数若干秒;2、使用“time_nanosleep(延迟秒数,延迟纳秒数)”语句,可延迟执行函数若干秒和纳秒;3、使用“time_sleep_until(time()+7)”语句。

php怎么除以100保留两位小数php怎么除以100保留两位小数Apr 22, 2022 pm 06:23 PM

php除以100保留两位小数的方法:1、利用“/”运算符进行除法运算,语法“数值 / 100”;2、使用“number_format(除法结果, 2)”或“sprintf("%.2f",除法结果)”语句进行四舍五入的处理值,并保留两位小数。

php字符串有没有下标php字符串有没有下标Apr 24, 2022 am 11:49 AM

php字符串有下标。在PHP中,下标不仅可以应用于数组和对象,还可应用于字符串,利用字符串的下标和中括号“[]”可以访问指定索引位置的字符,并对该字符进行读写,语法“字符串名[下标值]”;字符串的下标值(索引值)只能是整数类型,起始值为0。

php怎么根据年月日判断是一年的第几天php怎么根据年月日判断是一年的第几天Apr 22, 2022 pm 05:02 PM

判断方法:1、使用“strtotime("年-月-日")”语句将给定的年月日转换为时间戳格式;2、用“date("z",时间戳)+1”语句计算指定时间戳是一年的第几天。date()返回的天数是从0开始计算的,因此真实天数需要在此基础上加1。

php怎么替换nbsp空格符php怎么替换nbsp空格符Apr 24, 2022 pm 02:55 PM

方法:1、用“str_replace("&nbsp;","其他字符",$str)”语句,可将nbsp符替换为其他字符;2、用“preg_replace("/(\s|\&nbsp\;||\xc2\xa0)/","其他字符",$str)”语句。

php怎么读取字符串后几个字符php怎么读取字符串后几个字符Apr 22, 2022 pm 08:31 PM

在php中,可以使用substr()函数来读取字符串后几个字符,只需要将该函数的第二个参数设置为负值,第三个参数省略即可;语法为“substr(字符串,-n)”,表示读取从字符串结尾处向前数第n个字符开始,直到字符串结尾的全部字符。

php怎么判断有没有小数点php怎么判断有没有小数点Apr 20, 2022 pm 08:12 PM

php判断有没有小数点的方法:1、使用“strpos(数字字符串,'.')”语法,如果返回小数点在字符串中第一次出现的位置,则有小数点;2、使用“strrpos(数字字符串,'.')”语句,如果返回小数点在字符串中最后一次出现的位置,则有。

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

MantisBT

MantisBT

Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

DVWA

DVWA

Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

EditPlus Chinese cracked version

EditPlus Chinese cracked version

Small size, syntax highlighting, does not support code prompt function

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version