search
HomeTechnology peripheralsAIHow amazing is the simple speech conversion model that supports cross-language, human voice and dog barking interchange, and only uses nearest neighbors?

The voice world in which AI participates is really magical. It can not only change one person's voice to that of any other person, but also exchange voices with animals.

We know that the goal of speech conversion is to convert the source speech into the target speech while keeping the content unchanged. Recent any-to-any speech conversion methods improve naturalness and speaker similarity, but at the expense of greatly increased complexity. This means that training and inference become more expensive, making improvements difficult to evaluate and establish.

The question is, does high-quality speech conversion require complexity? In a recent paper from the University of Stellenbosch in South Africa, several researchers explored this issue.

How amazing is the simple speech conversion model that supports cross-language, human voice and dog barking interchange, and only uses nearest neighbors?

  • ##Paper address: https://arxiv.org/pdf/2305.18975.pdf
  • GitHub address: https://bshall.github.io/knn-vc/

The research highlights are: They introduced K nearest neighbor speech conversion ( kNN-VC), a simple and powerful any-to-any speech conversion method. Instead of training an explicit transformation model, K-nearest neighbor regression is simply used.

Specifically, the researchers first used a self-supervised speech representation model to extract the feature sequence of the source utterance and the reference utterance, and then replaced each frame of the source representation with one in the reference. nearest neighbor to convert to the target speaker, and finally use a neural vocoder to synthesize the converted features to obtain the converted speech.

From the results, despite its simplicity, KNN-VC achieves comparable or even improved intelligibility in both subjective and objective evaluations compared to several baseline speech conversion systems Similarity to the speaker.

Let’s appreciate the effect of KNN-VC voice conversion. Looking first at human voice conversion, KNN-VC is applied to source and target speakers unseen in the LibriSpeech dataset.

Source voice00:11

##Synthetic voice 100:11

Synthetic Speech 200:11

KNN-VC also supports cross-language speech conversion, such as Spanish to German, German to Japanese, Chinese to Spanish.

Source Chinese00:08

Destination Spanish00:05

Synthetic Speech 300:08

What’s even more amazing is that KNN-VC can also combine human voices with dogs Bark swap.

Source Dog Barking00:09

Source Human Voice00:05

Synthetic Voice 400:08

##Synthetic Voice 5

00:05We next look at how KNN-VC runs and compares it with other jixian methods.

Method Overview and Experimental Results

The architecture diagram of kNN-VC is as shown below, following the encoder-converter-vocoder structure. First the encoder extracts self-supervised representations of the source and reference speech, then the converter maps each source frame to their nearest neighbor in the reference, and finally the vocoder generates audio waveforms based on the converted features.

The encoder uses WavLM, the converter uses K nearest neighbor regression, and the vocoder uses HiFiGAN. The only component that requires training is the vocoder.

For the WavLM encoder, the researcher only used the pre-trained WavLM-Large model and did not do any training on it in the article. For the kNN transformation model, kNN is non-parametric and does not require any training. For the HiFiGAN vocoder, the original HiFiGAN author's repo was used to vocode the WavLM features, becoming the only part that required training.

Picture

How amazing is the simple speech conversion model that supports cross-language, human voice and dog barking interchange, and only uses nearest neighbors?In the experiment, the researchers first compared KNN-VC with other baseline methods, using the maximum available Target data (approximately 8 minutes of audio per speaker) to test the speech conversion system.

For KNN-VC, the researcher uses all target data as the matching set. For the baseline method, they average speaker embeddings for each target utterance.

Table 1 below reports the results for intelligibility, naturalness, and speaker similarity for each model. As can be seen, kNN-VC achieves similar naturalness and clarity to the best baseline FreeVC, but with significantly improved speaker similarity. This also confirms the assertion of this article: high-quality speech conversion does not require increased complexity.

How amazing is the simple speech conversion model that supports cross-language, human voice and dog barking interchange, and only uses nearest neighbors?

In addition, the researchers wanted to understand how much of the improvement was due to HiFi-GAN trained on pre-matched data, as well as target speaker data How much does size affect intelligibility and speaker similarity.

Figure 2 below shows the relationship between WER (smaller is better) and EER (higher is better) for two HiFi-GAN variants at different target speaker sizes.

How amazing is the simple speech conversion model that supports cross-language, human voice and dog barking interchange, and only uses nearest neighbors?Picture

Netizen Comments

For this "only use nearest neighbors" "'s new speech conversion method kNN-VC, some people think that the pre-trained speech model is used in the article, so using "only" is not accurate. But it is undeniable that kNN-VC is still simpler than other models.

The results also demonstrate that kNN-VC is equally effective, if not the best, compared to very complex any-to-any speech conversion methods.

How amazing is the simple speech conversion model that supports cross-language, human voice and dog barking interchange, and only uses nearest neighbors?Picture

Some people also said that the example of interchange of human voice and dog barking is very interesting.

How amazing is the simple speech conversion model that supports cross-language, human voice and dog barking interchange, and only uses nearest neighbors?picture

The above is the detailed content of How amazing is the simple speech conversion model that supports cross-language, human voice and dog barking interchange, and only uses nearest neighbors?. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:51CTO.COM. If there is any infringement, please contact admin@php.cn delete
ai合并图层的快捷键是什么ai合并图层的快捷键是什么Jan 07, 2021 am 10:59 AM

ai合并图层的快捷键是“Ctrl+Shift+E”,它的作用是把目前所有处在显示状态的图层合并,在隐藏状态的图层则不作变动。也可以选中要合并的图层,在菜单栏中依次点击“窗口”-“路径查找器”,点击“合并”按钮。

ai橡皮擦擦不掉东西怎么办ai橡皮擦擦不掉东西怎么办Jan 13, 2021 am 10:23 AM

ai橡皮擦擦不掉东西是因为AI是矢量图软件,用橡皮擦不能擦位图的,其解决办法就是用蒙板工具以及钢笔勾好路径再建立蒙板即可实现擦掉东西。

谷歌超强AI超算碾压英伟达A100!TPU v4性能提升10倍,细节首次公开谷歌超强AI超算碾压英伟达A100!TPU v4性能提升10倍,细节首次公开Apr 07, 2023 pm 02:54 PM

虽然谷歌早在2020年,就在自家的数据中心上部署了当时最强的AI芯片——TPU v4。但直到今年的4月4日,谷歌才首次公布了这台AI超算的技术细节。论文地址:https://arxiv.org/abs/2304.01433相比于TPU v3,TPU v4的性能要高出2.1倍,而在整合4096个芯片之后,超算的性能更是提升了10倍。另外,谷歌还声称,自家芯片要比英伟达A100更快、更节能。与A100对打,速度快1.7倍论文中,谷歌表示,对于规模相当的系统,TPU v4可以提供比英伟达A100强1.

ai可以转成psd格式吗ai可以转成psd格式吗Feb 22, 2023 pm 05:56 PM

ai可以转成psd格式。转换方法:1、打开Adobe Illustrator软件,依次点击顶部菜单栏的“文件”-“打开”,选择所需的ai文件;2、点击右侧功能面板中的“图层”,点击三杠图标,在弹出的选项中选择“释放到图层(顺序)”;3、依次点击顶部菜单栏的“文件”-“导出”-“导出为”;4、在弹出的“导出”对话框中,将“保存类型”设置为“PSD格式”,点击“导出”即可;

ai顶部属性栏不见了怎么办ai顶部属性栏不见了怎么办Feb 22, 2023 pm 05:27 PM

ai顶部属性栏不见了的解决办法:1、开启Ai新建画布,进入绘图页面;2、在Ai顶部菜单栏中点击“窗口”;3、在系统弹出的窗口菜单页面中点击“控制”,然后开启“控制”窗口即可显示出属性栏。

GPT-4的研究路径没有前途?Yann LeCun给自回归判了死刑GPT-4的研究路径没有前途?Yann LeCun给自回归判了死刑Apr 04, 2023 am 11:55 AM

Yann LeCun 这个观点的确有些大胆。 「从现在起 5 年内,没有哪个头脑正常的人会使用自回归模型。」最近,图灵奖得主 Yann LeCun 给一场辩论做了个特别的开场。而他口中的自回归,正是当前爆红的 GPT 家族模型所依赖的学习范式。当然,被 Yann LeCun 指出问题的不只是自回归模型。在他看来,当前整个的机器学习领域都面临巨大挑战。这场辩论的主题为「Do large language models need sensory grounding for meaning and u

强化学习再登Nature封面,自动驾驶安全验证新范式大幅减少测试里程强化学习再登Nature封面,自动驾驶安全验证新范式大幅减少测试里程Mar 31, 2023 pm 10:38 PM

引入密集强化学习,用 AI 验证 AI。 自动驾驶汽车 (AV) 技术的快速发展,使得我们正处于交通革命的风口浪尖,其规模是自一个世纪前汽车问世以来从未见过的。自动驾驶技术具有显着提高交通安全性、机动性和可持续性的潜力,因此引起了工业界、政府机构、专业组织和学术机构的共同关注。过去 20 年里,自动驾驶汽车的发展取得了长足的进步,尤其是随着深度学习的出现更是如此。到 2015 年,开始有公司宣布他们将在 2020 之前量产 AV。不过到目前为止,并且没有 level 4 级别的 AV 可以在市场

ai移动不了东西了怎么办ai移动不了东西了怎么办Mar 07, 2023 am 10:03 AM

ai移动不了东西的解决办法:1、打开ai软件,打开空白文档;2、选择矩形工具,在文档中绘制矩形;3、点击选择工具,移动文档中的矩形;4、点击图层按钮,弹出图层面板对话框,解锁图层;5、点击选择工具,移动矩形即可。

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Tools

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools