search
HomeOperation and MaintenanceLinux Operation and MaintenanceMethods to solve the memory fragmentation problem in Linux system

Common memory fragmentation problems in Linux systems and their solutions

If you are a user using a Linux operating system, you may encounter some memory management problems during use. Among them, memory fragmentation is a relatively common problem, which can lead to system performance degradation and waste of memory resources. This article will explore common memory fragmentation problems in Linux systems and provide some solutions.

First of all, let us first understand what memory fragmentation is. In Linux systems, memory is managed in the form of pages. When a program applies for memory, the system allocates the memory into a series of pages and records the usage status of each page. Memory fragmentation refers to when there are a large number of small blocks of memory scattered in various pages, and there is not enough continuous space to satisfy the request for large blocks of memory. This will cause the system to be unable to effectively utilize memory, thus affecting system performance.

Memory fragmentation problems can be divided into two types: external fragmentation and internal fragmentation. External fragmentation refers to a large number of small blocks of memory scattered across various pages, resulting in insufficient contiguous space to satisfy the request for large blocks of memory. Internal fragmentation means that there are some unused parts of each page, resulting in a waste of memory resources. Below we will introduce the solutions to these two memory fragmentation problems respectively.

For external fragmentation problems, we can solve it through memory compaction. Memory compaction refers to reorganizing the memory in each page to create larger contiguous memory blocks to satisfy the request for large blocks of memory. The Linux system provides a mechanism called "compaction" for memory compaction. Memory compaction can be triggered manually by executing the following command:

echo 1 > /proc/sys/vm/compact_memory

In addition, memory compaction can also be set to occur automatically. Memory compaction can be set to automatic mode by running the following command:

echo 1 > /proc/sys/vm/compact_automatically

For internal fragmentation issues, we can solve it by using the memory allocator. A memory allocator is a tool used to manage memory allocation and deallocation in a system. In Linux systems, the glibc library provides a memory allocator called malloc. However, the glibc library's malloc memory allocator may produce large internal fragmentation when dealing with small blocks of memory. To solve this problem, we can use other memory allocators such as jemalloc, tcmalloc, etc., which handle internal fragmentation better.

We can solve the internal fragmentation problem by setting the memory allocator to jemalloc. jemalloc can be enabled by setting the environment variable before the program is run:

export LD_PRELOAD=/usr/lib/libjemalloc.so

Additionally, the behavior of jemalloc can be optimized by setting the environment variable MALLOC_CONF:

export MALLOC_CONF=oversize_threshold:32,background_thread:true

This will Make jemalloc use background threads on memory blocks larger than 32 bytes to reduce memory fragmentation.

In addition to using jemalloc, you can also try to use other memory allocators such as tcmalloc to solve internal fragmentation problems. These memory allocators usually have better memory management capabilities and can handle memory fragmentation better.

To sum up, the memory fragmentation problem in Linux systems is a common problem, but it can be solved through some methods. By using memory compaction and optimizing the memory allocator, we can effectively reduce the negative impact of memory fragmentation problems and improve system performance and memory utilization.

The above is the detailed content of Methods to solve the memory fragmentation problem in Linux system. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
What is Maintenance Mode in Linux? ExplainedWhat is Maintenance Mode in Linux? ExplainedApr 22, 2025 am 12:06 AM

MaintenanceModeinLinuxisaspecialbootenvironmentforcriticalsystemmaintenancetasks.Itallowsadministratorstoperformtaskslikeresettingpasswords,repairingfilesystems,andrecoveringfrombootfailuresinaminimalenvironment.ToenterMaintenanceMode,interrupttheboo

Linux: A Deep Dive into Its Fundamental PartsLinux: A Deep Dive into Its Fundamental PartsApr 21, 2025 am 12:03 AM

The core components of Linux include kernel, file system, shell, user and kernel space, device drivers, and performance optimization and best practices. 1) The kernel is the core of the system, managing hardware, memory and processes. 2) The file system organizes data and supports multiple types such as ext4, Btrfs and XFS. 3) Shell is the command center for users to interact with the system and supports scripting. 4) Separate user space from kernel space to ensure system stability. 5) The device driver connects the hardware to the operating system. 6) Performance optimization includes tuning system configuration and following best practices.

Linux Architecture: Unveiling the 5 Basic ComponentsLinux Architecture: Unveiling the 5 Basic ComponentsApr 20, 2025 am 12:04 AM

The five basic components of the Linux system are: 1. Kernel, 2. System library, 3. System utilities, 4. Graphical user interface, 5. Applications. The kernel manages hardware resources, the system library provides precompiled functions, system utilities are used for system management, the GUI provides visual interaction, and applications use these components to implement functions.

Linux Operations: Utilizing the Maintenance ModeLinux Operations: Utilizing the Maintenance ModeApr 19, 2025 am 12:08 AM

Linux maintenance mode can be entered through the GRUB menu. The specific steps are: 1) Select the kernel in the GRUB menu and press 'e' to edit, 2) Add 'single' or '1' at the end of the 'linux' line, 3) Press Ctrl X to start. Maintenance mode provides a secure environment for tasks such as system repair, password reset and system upgrade.

Linux: How to Enter Recovery Mode (and Maintenance)Linux: How to Enter Recovery Mode (and Maintenance)Apr 18, 2025 am 12:05 AM

The steps to enter Linux recovery mode are: 1. Restart the system and press the specific key to enter the GRUB menu; 2. Select the option with (recoverymode); 3. Select the operation in the recovery mode menu, such as fsck or root. Recovery mode allows you to start the system in single-user mode, perform file system checks and repairs, edit configuration files, and other operations to help solve system problems.

Linux's Essential Components: Explained for BeginnersLinux's Essential Components: Explained for BeginnersApr 17, 2025 am 12:08 AM

The core components of Linux include the kernel, file system, shell and common tools. 1. The kernel manages hardware resources and provides basic services. 2. The file system organizes and stores data. 3. Shell is the interface for users to interact with the system. 4. Common tools help complete daily tasks.

Linux: A Look at Its Fundamental StructureLinux: A Look at Its Fundamental StructureApr 16, 2025 am 12:01 AM

The basic structure of Linux includes the kernel, file system, and shell. 1) Kernel management hardware resources and use uname-r to view the version. 2) The EXT4 file system supports large files and logs and is created using mkfs.ext4. 3) Shell provides command line interaction such as Bash, and lists files using ls-l.

Linux Operations: System Administration and MaintenanceLinux Operations: System Administration and MaintenanceApr 15, 2025 am 12:10 AM

The key steps in Linux system management and maintenance include: 1) Master the basic knowledge, such as file system structure and user management; 2) Carry out system monitoring and resource management, use top, htop and other tools; 3) Use system logs to troubleshoot, use journalctl and other tools; 4) Write automated scripts and task scheduling, use cron tools; 5) implement security management and protection, configure firewalls through iptables; 6) Carry out performance optimization and best practices, adjust kernel parameters and develop good habits.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

SecLists

SecLists

SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

DVWA

DVWA

Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.