How to optimize the concurrent scheduler in Go language development
Introduction:
With the development of computer technology, multi-core processors have become the standard configuration of modern computer systems. To better utilize the performance of multi-core processors, programmers need to develop parallelized programs. As a concurrency-oriented programming language, Go language provides powerful concurrency support, in which the concurrent scheduler is one of the key components to achieve concurrency. This article will introduce how to optimize the concurrent scheduler in Go language development to improve program performance and efficiency.
1. Working principle of concurrent scheduler
In Go language, goroutine is the basic unit to achieve concurrency. The concurrent scheduler is responsible for mapping goroutines to threads and scheduling the execution of goroutines corresponding to threads. It works as follows:
- Create a thread pool: The concurrent scheduler will first create a thread pool. The number of threads in the thread pool is usually equal to the number of cores of the computer system, and each thread corresponds to one Processor core.
- Mapping goroutine to thread: When a new goroutine appears in the program, the scheduler will add it to the queue waiting for execution. Next, the scheduler selects a goroutine from the queue waiting to be executed and maps it to the thread.
- Scheduling threads to execute goroutine: Once a goroutine is mapped to a thread, the thread will start executing the goroutine. When the goroutine completes execution or blocks, the thread will release the goroutine and select a new goroutine from the queue waiting for execution.
2. Methods to optimize the concurrent scheduler
For the concurrent scheduler in Go language development, we can adopt the following optimization methods to improve the performance and efficiency of the program.
- Adjust the size of the thread pool: The size of the thread pool has a direct impact on the performance of the concurrent scheduler. If the number of threads in the thread pool is too small, the system will not be able to fully utilize the number of cores of the computer system, thereby reducing the degree of concurrency. If there are too many threads in the thread pool, the cost of thread switching will increase, thereby reducing the efficiency of the program. Therefore, properly adjusting the size of the thread pool can improve the performance of the concurrent scheduler.
- Use the work-stealing algorithm: The work-stealing algorithm is a scheduling algorithm commonly used in parallel programming. It can steal tasks from other threads for execution when the thread has no executable tasks. In the concurrent scheduler of the Go language, the work-stealing algorithm can be used to balance the load between threads, improve the concurrency of the program, and thereby improve the performance of the scheduler.
- Reduce the use of locks: In multi-threaded programming, locks are a common synchronization mechanism, but excessive lock use can lead to problems such as race conditions and deadlocks. Therefore, in order to optimize the performance of the concurrent scheduler, the use of locks should be minimized. Lock-free data structures, concurrency-safe data structures, or finer-grained locks can be used to reduce competition for shared resources, thereby improving program concurrency.
- Avoid excessive creation and destruction of goroutines: Creating and destroying goroutines is a resource-consuming operation. Excessive creation and destruction of goroutines will increase the scheduler's overhead and reduce program performance. Therefore, in order to optimize the performance of the concurrent scheduler, excessive creation and destruction of goroutines should be avoided as much as possible. A goroutine pool can be used to reuse goroutines, thereby reducing the number of creation and destruction.
- Optimize the scheduling strategy of goroutine: The concurrent scheduler of Go language provides some scheduling-related functions and options, which can optimize the scheduling strategy of goroutine according to specific business scenarios, thereby improving the performance of the scheduler. For example, you can use the scheduler function Gosched() to actively give up the execution rights of the current goroutine, thereby improving the execution efficiency of other goroutines.
Conclusion:
Optimizing the concurrent scheduler is one of the important means to improve the performance and efficiency of Go language programs. By properly adjusting the size of the thread pool, using work-stealing algorithms, reducing the use of locks, avoiding excessive creation and destruction of goroutines, and optimizing the goroutine scheduling strategy, we can effectively improve the performance of the concurrent scheduler. By optimizing the concurrent scheduler, not only can the performance of multi-core processors be fully utilized, but the response speed and throughput of the program can also be improved, and the user experience can be improved.
The above is the detailed content of How to optimize the concurrent scheduler in Go language development. For more information, please follow other related articles on the PHP Chinese website!

GeforceExperience不仅为您下载最新版本的游戏驱动程序,它还提供更多!最酷的事情之一是它可以根据您的系统规格优化您安装的所有游戏,为您提供最佳的游戏体验。但是一些游戏玩家报告了一个问题,即GeForceExperience没有优化他们系统上的游戏。只需执行这些简单的步骤即可在您的系统上解决此问题。修复1–为所有游戏使用最佳设置您可以设置为所有游戏使用最佳设置。1.在您的系统上打开GeForceExperience应用程序。2.GeForceExperience面

Nginx是一种常用的Web服务器,代理服务器和负载均衡器,性能优越,安全可靠,可以用于高负载的Web应用程序。在本文中,我们将探讨Nginx的性能优化和安全设置。一、性能优化调整worker_processes参数worker_processes是Nginx的一个重要参数。它指定了可以使用的worker进程数。这个值需要根据服务器硬件、网络带宽、负载类型等

如果您在Windows机器上玩旧版游戏,您会很高兴知道Microsoft为它们计划了某些优化,特别是如果您在窗口模式下运行它们。该公司宣布,最近开发频道版本的内部人员现在可以利用这些功能。本质上,许多旧游戏使用“legacy-blt”演示模型在您的显示器上渲染帧。尽管DirectX12(DX12)已经利用了一种称为“翻转模型”的新演示模式,但Microsoft现在也正在向DX10和DX11游戏推出这一增强功能。迁移将改善延迟,还将为自动HDR和可变刷新率(VRR)等进一步增强打

随着互联网的不断发展和应用的扩展,越来越多的网站和应用需要处理海量的数据和实现高流量的访问。在这种背景下,对于PHP和MySQL这样的常用技术,缓存优化成为了非常必要的优化手段。本文将在介绍缓存的概念及作用的基础上,从两个方面的PHP和MySQL进行缓存优化的实现,希望能够为广大开发者提供一些帮助。一、缓存的概念及作用缓存是指将计算结果或读取数据的结果缓存到

昨天一个跑了220个小时的微调训练完成了,主要任务是想在CHATGLM-6B上微调出一个能够较为精确的诊断数据库错误信息的对话模型来。不过这个等了将近十天的训练最后的结果令人失望,比起我之前做的一个样本覆盖更小的训练来,差的还是挺大的。这样的结果还是有点令人失望的,这个模型基本上是没有实用价值的。看样子需要重新调整参数与训练集,再做一次训练。大语言模型的训练是一场军备竞赛,没有好的装备是玩不起来的。看样子我们也必须要升级一下实验室的装备了,否则没有几个十天可以浪费。从最近的几次失败的微调训练来看

MySQL是目前最流行的关系型数据库之一,但是在处理大量数据时,MySQL的性能可能会受到影响。其中,一种常见的性能瓶颈是查询中的LIKE操作。在MySQL中,LIKE操作是用来模糊匹配字符串的,它可以在查询数据表时用来查找包含指定字符或者模式的数据记录。但是,在大型数据表中,如果使用LIKE操作,它会对数据库的性能造成影响。为了解决这个问题,我们可

5月26日消息,SnapchatAR试穿滤镜技术升级,并与OPI品牌合作,推出指甲油AR试用滤镜。据悉,为了优化AR滤镜对手指甲的追踪定位,Snap在LensStudio中推出手部和指甲分割功能,允许开发者将AR图像叠加在指甲这种细节部分。据青亭网了解,指甲分割功能在识别到人手后,会给手部和指甲分别设置掩膜,用于渲染2D纹理。此外,还会识别用户个人指甲的底色,来模拟指甲油真实上手的效果。从演示效果来看,新的AR指甲油滤镜可以很好的模拟浅蓝磨砂质地。实际上,此前Snapchat曾推出AR指甲油试用

Go语言是一门相对年轻的编程语言,虽然从语言本身的设计来看,其已经考虑到了很多优化点,使得其具备高效的性能和良好的可维护性,但是这并不代表着我们在开发Go应用时不需要优化和重构,特别是在长期的代码积累过程中,原来的代码架构可能已经开始失去优势,需要通过优化和重构来提高系统的性能和可维护性。本文将分享一些在Go语言中优化和重构的方法,希望能够对Go开发者有所帮


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

SublimeText3 English version
Recommended: Win version, supports code prompts!

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)
