How to deal with inter-thread communication issues in Java development
As a programming language that is particularly suitable for building multi-threaded applications, Java can make full use of the advantages of multi-core processors to improve program concurrency and efficiency. However, during multi-threaded development, the issue of communication between threads becomes a key challenge. This article will introduce several common methods for dealing with inter-thread communication problems.
- Shared variables
Shared variables are one of the simplest and most common methods of inter-thread communication. Multiple threads can pass information by accessing and modifying shared variables. However, since threads execute in parallel, race conditions may occur. To avoid race conditions, we need to use a mutex to protect access to shared variables. Mutex locks can be implemented in Java using the synchronized keyword or Lock interface.
The following is a sample code that uses shared variables for thread communication:
public class SharedVariableExample { private int sharedVar = 0; public synchronized void increment() { sharedVar++; } public synchronized int getSharedVar() { return sharedVar; } } public class MyThread extends Thread { private SharedVariableExample example; public MyThread(SharedVariableExample example) { this.example = example; } public void run() { for (int i = 0; i < 10; i++) { example.increment(); } } } public class Main { public static void main(String[] args) { SharedVariableExample example = new SharedVariableExample(); MyThread thread1 = new MyThread(example); MyThread thread2 = new MyThread(example); thread1.start(); thread2.start(); try { thread1.join(); thread2.join(); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println("SharedVar: " + example.getSharedVar()); } }
In the above example, the two threads perform 10 increment operations on the shared variables respectively, through join() The method waits for all threads to finish executing and prints the value of the shared variable.
- Waiting/notification mechanism
When using shared variables for inter-thread communication, if a thread needs to wait for the results of another thread, we can use the wait/notification mechanism (Wait/Notify Mechanism). When a thread needs to wait, it can call the object's wait() method to put the thread into a waiting state. When a certain condition is met, other threads call the object's notify() method to wake up the waiting thread.
The following is a sample code that uses the wait/notification mechanism for thread communication:
public class WaitNotifyExample { private boolean flag = false; public synchronized void waitForSignal() { while (!flag) { try { wait(); } catch (InterruptedException e) { e.printStackTrace(); } } flag = false; System.out.println("Received signal"); } public synchronized void sendSignal() { flag = true; notify(); } } public class WaitThread extends Thread { private WaitNotifyExample example; public WaitThread(WaitNotifyExample example) { this.example = example; } public void run() { example.waitForSignal(); } } public class NotifyThread extends Thread { private WaitNotifyExample example; public NotifyThread(WaitNotifyExample example) { this.example = example; } public void run() { example.sendSignal(); } } public class Main { public static void main(String[] args) { WaitNotifyExample example = new WaitNotifyExample(); WaitThread waitThread = new WaitThread(example); NotifyThread notifyThread = new NotifyThread(example); waitThread.start(); try { Thread.sleep(1000); } catch (InterruptedException e) { e.printStackTrace(); } notifyThread.start(); try { waitThread.join(); notifyThread.join(); } catch (InterruptedException e) { e.printStackTrace(); } } }
In the above example, the WaitThread thread waits for the signal to be received, and the NotifyThread thread sends the signal through sleep() The method waits for a period of time and then wakes up the waiting thread.
- Blocking Queue
Blocking Queue is an efficient way to achieve communication between threads. It provides put() and take() methods, which can automatically block and wait when the queue is full or empty until the conditions are met.
The following is a sample code that uses blocking queues for thread communication:
import java.util.concurrent.ArrayBlockingQueue;
The above is the detailed content of How to deal with inter-thread communication issues in Java development. For more information, please follow other related articles on the PHP Chinese website!

Start Spring using IntelliJIDEAUltimate version...

When using MyBatis-Plus or other ORM frameworks for database operations, it is often necessary to construct query conditions based on the attribute name of the entity class. If you manually every time...

Java...

How does the Redis caching solution realize the requirements of product ranking list? During the development process, we often need to deal with the requirements of rankings, such as displaying a...

Conversion of Java Objects and Arrays: In-depth discussion of the risks and correct methods of cast type conversion Many Java beginners will encounter the conversion of an object into an array...

Solutions to convert names to numbers to implement sorting In many application scenarios, users may need to sort in groups, especially in one...

Detailed explanation of the design of SKU and SPU tables on e-commerce platforms This article will discuss the database design issues of SKU and SPU in e-commerce platforms, especially how to deal with user-defined sales...

How to set the SpringBoot project default run configuration list in Idea using IntelliJ...


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Atom editor mac version download
The most popular open source editor

SublimeText3 Linux new version
SublimeText3 Linux latest version

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

Zend Studio 13.0.1
Powerful PHP integrated development environment

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.