search
HomeBackend DevelopmentPython TutorialScrapy implements data crawling for keyword search

Scrapy implements data crawling for keyword search

Jun 22, 2023 pm 06:01 PM
Data crawlingkeyword searchscrapy

Crawler technology is very important for obtaining data and information from the Internet, and scrapy, as an efficient, flexible and scalable web crawler framework, can simplify the process of data crawling and is very useful for crawling data from the Internet. practical. This article will introduce how to use scrapy to implement data crawling for keyword searches.

  1. Introduction to Scrapy

Scrapy is a web crawler framework based on the Python language. It is efficient, flexible and scalable and can be used for data crawling, Various tasks such as information management and automated testing. Scrapy contains a variety of components, such as crawler parsers, web crawlers, data processors, etc., through which efficient web crawling and data processing can be achieved.

  1. Implementing keyword search

Before using Scrapy to implement data crawling for keyword search, you need to know something about the architecture of the Scrapy framework and basic libraries such as requests and BeautifulSoup. learn. The specific implementation steps are as follows:

(1) Create a project

Enter the following command on the command line to create a Scrapy project:

scrapy startproject search

This command will create a directory named search in the current directory, which contains a settings.py file and a subdirectory named spiders.

(2) Crawler writing

Create a new file named searchspider.py in the spiders subdirectory, and write the crawler code in the file.

First define the keywords to be searched:

search_word = 'Scrapy'

Then define the URL for data crawling:

start_urls = [

'https://www.baidu.com/s?wd={0}&pn={1}'.format(search_word, i*10) for i in range(10)

]

This code will crawl data from the first 10 pages of Baidu search results.

Next, we need to build a crawler parser, in which the BeautifulSoup library is used to parse the web page, and then extract information such as the title and URL:

def parse(self , response):

soup = BeautifulSoup(response.body, 'lxml')
for link in soup.find_all('a'):
    url = link.get('href')
    if url.startswith('http') and not url.startswith('https://www.baidu.com/link?url='):
        yield scrapy.Request(url, callback=self.parse_information)

yield {'title': link.text, 'url': url}

The BeautifulSoup library is used when parsing web pages. This library can make full use of the advantages of the Python language to quickly parse web pages and extract the required data.

Finally, we need to store the captured data in a local file and define the data processor in the pipeline.py file:

class SearchPipeline(object):

def process_item(self, item, spider):
    with open('result.txt', 'a+', encoding='utf-8') as f:
        f.write(item['title'] + '    ' + item['url'] + '

')

This code processes each crawled data and writes the title and URL to the result.txt file respectively.

(3) Run the crawler

Enter the directory where the crawler project is located on the command line, and enter the following command to run the crawler:

scrapy crawl search

Use this command to start the crawler program. The program will automatically crawl data related to the keyword Scrapy from Baidu search results and output the results to the specified file.

  1. Conclusion

By using basic libraries such as Scrapy framework and BeautifulSoup, we can easily implement data crawling for keyword searches. The Scrapy framework is efficient, flexible and scalable, making the data crawling process more intelligent and efficient, and is very suitable for application scenarios where large amounts of data are obtained from the Internet. In practical applications, we can further improve the efficiency and quality of data crawling by optimizing the parser and improving the data processor.

The above is the detailed content of Scrapy implements data crawling for keyword search. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
How does the choice between lists and arrays impact the overall performance of a Python application dealing with large datasets?How does the choice between lists and arrays impact the overall performance of a Python application dealing with large datasets?May 03, 2025 am 12:11 AM

ForhandlinglargedatasetsinPython,useNumPyarraysforbetterperformance.1)NumPyarraysarememory-efficientandfasterfornumericaloperations.2)Avoidunnecessarytypeconversions.3)Leveragevectorizationforreducedtimecomplexity.4)Managememoryusagewithefficientdata

Explain how memory is allocated for lists versus arrays in Python.Explain how memory is allocated for lists versus arrays in Python.May 03, 2025 am 12:10 AM

InPython,listsusedynamicmemoryallocationwithover-allocation,whileNumPyarraysallocatefixedmemory.1)Listsallocatemorememorythanneededinitially,resizingwhennecessary.2)NumPyarraysallocateexactmemoryforelements,offeringpredictableusagebutlessflexibility.

How do you specify the data type of elements in a Python array?How do you specify the data type of elements in a Python array?May 03, 2025 am 12:06 AM

InPython, YouCansSpectHedatatYPeyFeLeMeReModelerErnSpAnT.1) UsenPyNeRnRump.1) UsenPyNeRp.DLOATP.PLOATM64, Formor PrecisconTrolatatypes.

What is NumPy, and why is it important for numerical computing in Python?What is NumPy, and why is it important for numerical computing in Python?May 03, 2025 am 12:03 AM

NumPyisessentialfornumericalcomputinginPythonduetoitsspeed,memoryefficiency,andcomprehensivemathematicalfunctions.1)It'sfastbecauseitperformsoperationsinC.2)NumPyarraysaremorememory-efficientthanPythonlists.3)Itoffersawiderangeofmathematicaloperation

Discuss the concept of 'contiguous memory allocation' and its importance for arrays.Discuss the concept of 'contiguous memory allocation' and its importance for arrays.May 03, 2025 am 12:01 AM

Contiguousmemoryallocationiscrucialforarraysbecauseitallowsforefficientandfastelementaccess.1)Itenablesconstanttimeaccess,O(1),duetodirectaddresscalculation.2)Itimprovescacheefficiencybyallowingmultipleelementfetchespercacheline.3)Itsimplifiesmemorym

How do you slice a Python list?How do you slice a Python list?May 02, 2025 am 12:14 AM

SlicingaPythonlistisdoneusingthesyntaxlist[start:stop:step].Here'showitworks:1)Startistheindexofthefirstelementtoinclude.2)Stopistheindexofthefirstelementtoexclude.3)Stepistheincrementbetweenelements.It'susefulforextractingportionsoflistsandcanuseneg

What are some common operations that can be performed on NumPy arrays?What are some common operations that can be performed on NumPy arrays?May 02, 2025 am 12:09 AM

NumPyallowsforvariousoperationsonarrays:1)Basicarithmeticlikeaddition,subtraction,multiplication,anddivision;2)Advancedoperationssuchasmatrixmultiplication;3)Element-wiseoperationswithoutexplicitloops;4)Arrayindexingandslicingfordatamanipulation;5)Ag

How are arrays used in data analysis with Python?How are arrays used in data analysis with Python?May 02, 2025 am 12:09 AM

ArraysinPython,particularlythroughNumPyandPandas,areessentialfordataanalysis,offeringspeedandefficiency.1)NumPyarraysenableefficienthandlingoflargedatasetsandcomplexoperationslikemovingaverages.2)PandasextendsNumPy'scapabilitieswithDataFramesforstruc

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version

VSCode Windows 64-bit Download

VSCode Windows 64-bit Download

A free and powerful IDE editor launched by Microsoft

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.

mPDF

mPDF

mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),