


In the direction of large models, technology giants are training larger models, while academia is thinking of ways to optimize them. Recently, the method of optimizing computing power has risen to a new level.
Large-scale language models (LLM) have revolutionized the field of natural language processing (NLP), demonstrating extraordinary capabilities such as emergence and epiphany. However, if you want to build a model with certain general capabilities, billions of parameters are needed, which greatly raises the threshold for NLP research. The LLM model tuning process usually requires expensive GPU resources, such as an 8×80GB GPU device, which makes it difficult for small laboratories and companies to participate in research in this field.
Recently, people are studying parameter efficient fine-tuning techniques (PEFT), such as LoRA and Prefix-tuning, which provide solutions for tuning LLM with limited resources. However, these methods do not provide practical solutions for full-parameter fine-tuning, which has been recognized as a more powerful method than parameter-efficient fine-tuning.
In the paper "Full Parameter Fine-tuning for Large Language Models with Limited Resources" submitted by Qiu Xipeng's team at Fudan University last week, researchers proposed a new optimizer LOw- Memory Optimization (LOMO).
By integrating LOMO with existing memory saving techniques, the new approach reduces memory usage to 10.8% compared to the standard approach (DeepSpeed solution). As a result, the new approach enables full parameter fine-tuning of a 65B model on a machine with 8×RTX 3090s, each with 24GB of memory.
Paper link: https://arxiv.org/abs/2306.09782
In this work, the author analyzed four aspects of memory usage in LLM: activation, optimizer state, gradient tensor and parameters, and optimized the training process in three aspects:
- We rethought the function of the optimizer from an algorithmic perspective and found that SGD is a good alternative in fine-tuning the complete parameters of LLM. This allows the authors to delete entire parts of the optimizer state, since SGD does not store any intermediate state.
- The newly proposed optimizer LOMO reduces the memory usage of gradient tensors to O(1), which is equivalent to the memory usage of the largest gradient tensor.
- To stabilize mixed-precision training using LOMO, the authors integrate gradient normalization, loss scaling, and convert certain calculations to full precision during training.
#New technology makes memory usage equal to parameter usage plus activation and maximum gradient tensors. The memory usage of full parameter fine-tuning is pushed to the extreme, which is only equivalent to the usage of inference. This is because the memory footprint of the forward backward process should be no less than that of the forward process alone. It is worth noting that when using LOMO to save memory, the new method ensures that the fine-tuning process is not affected, because the parameter update process is still equivalent to SGD.
The study evaluated the memory and throughput performance of LOMO and showed that with LOMO, researchers can train a 65B parameter model on 8 RTX 3090 GPUs. Furthermore, to verify the performance of LOMO on downstream tasks, they applied LOMO to tune all parameters of LLM on the SuperGLUE dataset collection. The results demonstrate the effectiveness of LOMO for optimizing LLMs with billions of parameters.
Method introduction
In the method section, this article introduces LOMO (LOW-MEMORY OPTIMIZATION) in detail. Generally speaking, the gradient tensor represents the gradient of a parameter tensor, and its size is the same as the parameters, which results in larger memory overhead. Existing deep learning frameworks such as PyTorch store gradient tensors for all parameters. Currently, there are two reasons for storing gradient tensors: computing the optimizer state and normalizing gradients.
Since this study adopts SGD as the optimizer, there is no gradient-dependent optimizer state, and they have some alternatives to gradient normalization.
They proposed LOMO, as shown in Algorithm 1, which fuses gradient calculation and parameter update in one step, thus avoiding the storage of gradient tensors.
The following figure shows the comparison between SGD and LOMO in the backpropagation and parameter update stages. Pi is the model parameter, and Gi is the gradient corresponding to Pi. LOMO integrates gradient calculation and parameter update into a single step to minimize the gradient tensor.
LOMO corresponding algorithm pseudo code:
, which is a two-step process, first is to calculate the gradient and then update the parameters. The fused version is
The key idea of this research is to update the parameters immediately when calculating the gradient, so that the gradient tensor is not stored in memory. This step can be achieved by injecting hook functions into backpropagation. PyTorch provides related APIs for injecting hook functions, but it is impossible to achieve precise instant updates with the current API. Instead, this study stores the gradient of at most one parameter in memory and updates each parameter one by one with backpropagation. This method reduces the memory usage of gradients from storing gradients of all parameters to gradients of only one parameter.
Most of the LOMO memory usage is consistent with the memory usage of parameter-efficient fine-tuning methods, indicating that combining LOMO with these methods results in only a slight increase in gradient memory usage. This allows more parameters to be tuned for the PEFT method.
Experimental results
In the experimental part, the researchers evaluated their proposed method from three aspects, namely memory usage, throughput and downstream performance. Without further explanation, all experiments were performed using LLaMA models 7B to 65B.
Memory usage
The researchers first analyzed the model status and Activated memory usage. As shown in Table 1, compared with the AdamW optimizer, the use of the LOMO optimizer results in a significant reduction in memory usage, from 102.20GB to 14.58GB; compared with SGD, when training the LLaMA-7B model, the memory usage decreases from 51.99GB reduced to 14.58GB. The significant reduction in memory usage is primarily due to reduced memory requirements for gradients and optimizer states. Therefore, during the training process, the memory is mostly occupied by parameters, which is equivalent to the memory usage during inference.
As shown in Figure 2, if the AdamW optimizer is used for LLaMA-7B training, a considerable proportion of memory ( 73.7%) is assigned to optimizer state. Replacing the AdamW optimizer with the SGD optimizer effectively reduces the percentage of memory occupied by the optimizer state, thereby alleviating GPU memory usage (from 102.20GB to 51.99GB). If LOMO is used, parameter updates and backward are merged into a single step, further eliminating memory requirements for the optimizer state.
Throughput
Researchers compared LOMO, AdamW and SGD throughput performance. Experiments were conducted on a server equipped with 8 RTX 3090 GPUs.
For the 7B model, the throughput of LOMO shows a significant advantage, exceeding AdamW and SGD by about 11 times. This significant improvement can be attributed to LOMO's ability to train the 7B model on a single GPU, which reduces inter-GPU communication overhead. The slightly higher throughput of SGD compared to AdamW can be attributed to the fact that SGD excludes the calculation of momentum and variance.
As for the 13B model, due to memory limitations, it cannot be trained with AdamW on the existing 8 RTX 3090 GPUs. In this case, model parallelism is necessary for LOMO, which still outperforms SGD in terms of throughput. This advantage is attributed to the memory-efficient nature of LOMO and the fact that only two GPUs are required to train the model with the same settings, thus reducing communication costs and improving throughput. Additionally, SGD encountered out-of-memory (OOM) issues on 8 RTX 3090 GPUs when training the 30B model, while LOMO performed well with only 4 GPUs.
Finally, the researcher successfully trained the 65B model using 8 RTX 3090 GPUs, achieving a throughput of 4.93 TGS. With this server configuration and LOMO, the training process of the model on 1000 samples (each sample contains 512 tokens) takes approximately 3.6 hours.
Downstream Performance
To evaluate the effectiveness of LOMO in fine-tuning large language models, the researchers conducted a An extensive series of experiments. They compared LOMO with two other methods, one is Zero-shot, which does not require fine-tuning, and the other is LoRA, a popular parameter-efficient fine-tuning technique.
- LOMO’s performance is significantly better than Zero-shot ;
- In most experiments, LOMO generally outperforms LoRA;
- LOMO can effectively scale to a 65 billion parameter model.
LOMO and LoRA are essentially independent of each other. To verify this statement, the researchers conducted experiments on the BoolQ and MultiRC datasets using LLaMA-13B. The results are shown in Figure 3.
They found that LOMO continued to enhance the performance of LoRA, regardless of how high the results LoRA achieved. This shows that the different fine-tuning methods employed by LOMO and LoRA are complementary. Specifically, LOMO focuses on fine-tuning the weights of the pre-trained model, while LoRA adjusts other modules. Therefore, LOMO does not affect the performance of LoRA; instead, it facilitates better model tuning for downstream tasks.
See the original paper for more details.
The above is the detailed content of 65 billion parameters, 8 GPUs can fine-tune all parameters: Qiu Xipeng's team has lowered the threshold for large models. For more information, please follow other related articles on the PHP Chinese website!

1 前言在发布DALL·E的15个月后,OpenAI在今年春天带了续作DALL·E 2,以其更加惊艳的效果和丰富的可玩性迅速占领了各大AI社区的头条。近年来,随着生成对抗网络(GAN)、变分自编码器(VAE)、扩散模型(Diffusion models)的出现,深度学习已向世人展现其强大的图像生成能力;加上GPT-3、BERT等NLP模型的成功,人类正逐步打破文本和图像的信息界限。在DALL·E 2中,只需输入简单的文本(prompt),它就可以生成多张1024*1024的高清图像。这些图像甚至

Wav2vec 2.0 [1],HuBERT [2] 和 WavLM [3] 等语音预训练模型,通过在多达上万小时的无标注语音数据(如 Libri-light )上的自监督学习,显著提升了自动语音识别(Automatic Speech Recognition, ASR),语音合成(Text-to-speech, TTS)和语音转换(Voice Conversation,VC)等语音下游任务的性能。然而这些模型都没有公开的中文版本,不便于应用在中文语音研究场景。 WenetSpeech [4] 是

“Making large models smaller”这是很多语言模型研究人员的学术追求,针对大模型昂贵的环境和训练成本,陈丹琦在智源大会青源学术年会上做了题为“Making large models smaller”的特邀报告。报告中重点提及了基于记忆增强的TRIME算法和基于粗细粒度联合剪枝和逐层蒸馏的CofiPruning算法。前者能够在不改变模型结构的基础上兼顾语言模型困惑度和检索速度方面的优势;而后者可以在保证下游任务准确度的同时实现更快的处理速度,具有更小的模型结构。陈丹琦 普

由于复杂的注意力机制和模型设计,大多数现有的视觉 Transformer(ViT)在现实的工业部署场景中不能像卷积神经网络(CNN)那样高效地执行。这就带来了一个问题:视觉神经网络能否像 CNN 一样快速推断并像 ViT 一样强大?近期一些工作试图设计 CNN-Transformer 混合架构来解决这个问题,但这些工作的整体性能远不能令人满意。基于此,来自字节跳动的研究者提出了一种能在现实工业场景中有效部署的下一代视觉 Transformer——Next-ViT。从延迟 / 准确性权衡的角度看,

3月27号,Stability AI的创始人兼首席执行官Emad Mostaque在一条推文中宣布,Stable Diffusion XL 现已可用于公开测试。以下是一些事项:“XL”不是这个新的AI模型的官方名称。一旦发布稳定性AI公司的官方公告,名称将会更改。与先前版本相比,图像质量有所提高与先前版本相比,图像生成速度大大加快。示例图像让我们看看新旧AI模型在结果上的差异。Prompt: Luxury sports car with aerodynamic curves, shot in a

人工智能就是一个「拼财力」的行业,如果没有高性能计算设备,别说开发基础模型,就连微调模型都做不到。但如果只靠拼硬件,单靠当前计算性能的发展速度,迟早有一天无法满足日益膨胀的需求,所以还需要配套的软件来协调统筹计算能力,这时候就需要用到「智能计算」技术。最近,来自之江实验室、中国工程院、国防科技大学、浙江大学等多达十二个国内外研究机构共同发表了一篇论文,首次对智能计算领域进行了全面的调研,涵盖了理论基础、智能与计算的技术融合、重要应用、挑战和未来前景。论文链接:https://spj.scien

译者 | 李睿审校 | 孙淑娟近年来, Transformer 机器学习模型已经成为深度学习和深度神经网络技术进步的主要亮点之一。它主要用于自然语言处理中的高级应用。谷歌正在使用它来增强其搜索引擎结果。OpenAI 使用 Transformer 创建了著名的 GPT-2和 GPT-3模型。自从2017年首次亮相以来,Transformer 架构不断发展并扩展到多种不同的变体,从语言任务扩展到其他领域。它们已被用于时间序列预测。它们是 DeepMind 的蛋白质结构预测模型 AlphaFold

说起2010年南非世界杯的最大网红,一定非「章鱼保罗」莫属!这只位于德国海洋生物中心的神奇章鱼,不仅成功预测了德国队全部七场比赛的结果,还顺利地选出了最终的总冠军西班牙队。不幸的是,保罗已经永远地离开了我们,但它的「遗产」却在人们预测足球比赛结果的尝试中持续存在。在艾伦图灵研究所(The Alan Turing Institute),随着2022年卡塔尔世界杯的持续进行,三位研究员Nick Barlow、Jack Roberts和Ryan Chan决定用一种AI算法预测今年的冠军归属。预测模型图


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

WebStorm Mac version
Useful JavaScript development tools

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.
