search
HomeBackend DevelopmentPython TutorialPython server programming: YAML format parsing using PyYAML

Python server programming: Using PyYAML for YAML format parsing

With the rapid development of Internet technology, server programming has become more and more important. As a powerful programming language, Python is becoming more and more popular among developers. PyYAML is one of the most commonly used YAML format parsers in Python. This article will introduce how to use PyYAML to parse YAML format to help developers better program Python servers.

What is YAML?

YAML (Yet Another Markup Language) is a lightweight data exchange format. Compared with data formats such as XML and JSON, YAML is a format that is easier to read and write. Data in YAML format can be serialized and read and understood by humans. YAML was originally developed to solve the problem of XML being cumbersome and difficult to read.

YAML format example:

- name: Alice
  age: 25
  occupation: programmer
- name: Bob
  age: 30
  occupation: designer

Using PyYAML to parse YAML format

PyYAML is one of the most commonly used YAML format parsers in Python. It is a full-featured YAML parser that supports all core features of YAML 1.1 and 1.2. It is very simple to use PyYAML to parse the YAML format. You only need to convert the YAML format data into a Python object through the yaml.load() method.

import yaml

with open("data.yaml", 'r') as stream:
    data = yaml.load(stream)

print(data)

The above code reads and converts the YAML format data in the data.yaml file into a Python object, and finally prints the output.

In PyYAML, you can also use the yaml.dump() method to convert Python objects into YAML format data.

import yaml

data = [
    {'name': 'Alice', 'age': 25, 'occupation': 'programmer'},
    {'name': 'Bob', 'age': 30, 'occupation': 'designer'}
]

print(yaml.dump(data))

The above code converts the Python list into YAML format data and prints the output.

Advanced features of PyYAML

In addition to basic YAML format parsing and serialization, PyYAML also provides many advanced features, including type conversion, custom tags, validation, and extensions. Next, we'll look at some of these features in more detail.

Type conversion

PyYAML supports automatic conversion of data in YAML format to Python built-in types, including strings, integers, floating point numbers, dictionaries and lists, etc. For example, read the following YAML format data as a Python object:

date: 2021-06-25
count: 300
price: 99.99

During the reading process, PyYAML will automatically convert the date field to Python's datetime.dateObject, the count field is converted to Python's integer type, and the price field is converted to Python's floating point type.

Custom tags

PyYAML supports custom tags, which allows you to convert custom Python objects into YAML format data and convert them back when reading YAML data original object. For example, define the following custom class:

import datetime

class CustomDate:
    def __init__(self, year, month, day):
        self.date = datetime.date(year, month, day)

Then, we can use the following code to convert the custom class into YAML format:

import yaml

def custom_date_representer(dumper, data):
    return dumper.represent_scalar('!CustomDate', '{}/{}/{}'.format(data.date.year, data.date.month, data.date.day))

def custom_date_constructor(loader, node):
    value = loader.construct_scalar(node)
    year, month, day = map(int, value.split('/'))
    return CustomDate(year, month, day)

data = [
    CustomDate(2021, 6, 25),
    CustomDate(2021, 6, 26)
]

yaml.add_representer(CustomDate, custom_date_representer)
yaml.add_constructor('!CustomDate', custom_date_constructor)

print(yaml.dump(data))

In the above code, we register the custom tag!CustomDate, and defines the corresponding representer and constructor methods to convert the custom class into YAML format and restore it to the original object.

Validation and Extension

PyYAML also provides validation and extension functions, including verifying the correctness of YAML format data and registering new tags. For example, you can use the following code to verify the correctness of YAML format data:

import yaml

with open("data.yaml", 'r') as stream:
    try:
        data = yaml.safe_load(stream)
    except yaml.YAMLError as exc:
        print(exc)

The above code uses the yaml.safe_load() method to load YAML format data and output the corresponding data based on the correctness of the data. information.

At the same time, you can also use the following code to register a new tag:

import yaml

class CustomType:
    pass

def represent_custom_type(dumper, data):
    return dumper.represent_scalar('!CustomType', None)

yaml.add_representer(CustomType, represent_custom_type)

data = CustomType()

print(yaml.dump(data))

In the above code, we register the custom class CustomType as a new tag !CustomType, and defines the corresponding representer method to convert it into YAML format data.

Summary

This article introduces how to use PyYAML to parse and serialize YAML format, and introduces some advanced functions of PyYAML, including type conversion, custom tags, validation and extension, etc. Through the introduction of this article, I believe readers can have a deeper understanding of the use of PyYAML and get better applications in Python server programming.

The above is the detailed content of Python server programming: YAML format parsing using PyYAML. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Python: Automation, Scripting, and Task ManagementPython: Automation, Scripting, and Task ManagementApr 16, 2025 am 12:14 AM

Python excels in automation, scripting, and task management. 1) Automation: File backup is realized through standard libraries such as os and shutil. 2) Script writing: Use the psutil library to monitor system resources. 3) Task management: Use the schedule library to schedule tasks. Python's ease of use and rich library support makes it the preferred tool in these areas.

Python and Time: Making the Most of Your Study TimePython and Time: Making the Most of Your Study TimeApr 14, 2025 am 12:02 AM

To maximize the efficiency of learning Python in a limited time, you can use Python's datetime, time, and schedule modules. 1. The datetime module is used to record and plan learning time. 2. The time module helps to set study and rest time. 3. The schedule module automatically arranges weekly learning tasks.

Python: Games, GUIs, and MorePython: Games, GUIs, and MoreApr 13, 2025 am 12:14 AM

Python excels in gaming and GUI development. 1) Game development uses Pygame, providing drawing, audio and other functions, which are suitable for creating 2D games. 2) GUI development can choose Tkinter or PyQt. Tkinter is simple and easy to use, PyQt has rich functions and is suitable for professional development.

Python vs. C  : Applications and Use Cases ComparedPython vs. C : Applications and Use Cases ComparedApr 12, 2025 am 12:01 AM

Python is suitable for data science, web development and automation tasks, while C is suitable for system programming, game development and embedded systems. Python is known for its simplicity and powerful ecosystem, while C is known for its high performance and underlying control capabilities.

The 2-Hour Python Plan: A Realistic ApproachThe 2-Hour Python Plan: A Realistic ApproachApr 11, 2025 am 12:04 AM

You can learn basic programming concepts and skills of Python within 2 hours. 1. Learn variables and data types, 2. Master control flow (conditional statements and loops), 3. Understand the definition and use of functions, 4. Quickly get started with Python programming through simple examples and code snippets.

Python: Exploring Its Primary ApplicationsPython: Exploring Its Primary ApplicationsApr 10, 2025 am 09:41 AM

Python is widely used in the fields of web development, data science, machine learning, automation and scripting. 1) In web development, Django and Flask frameworks simplify the development process. 2) In the fields of data science and machine learning, NumPy, Pandas, Scikit-learn and TensorFlow libraries provide strong support. 3) In terms of automation and scripting, Python is suitable for tasks such as automated testing and system management.

How Much Python Can You Learn in 2 Hours?How Much Python Can You Learn in 2 Hours?Apr 09, 2025 pm 04:33 PM

You can learn the basics of Python within two hours. 1. Learn variables and data types, 2. Master control structures such as if statements and loops, 3. Understand the definition and use of functions. These will help you start writing simple Python programs.

How to teach computer novice programming basics in project and problem-driven methods within 10 hours?How to teach computer novice programming basics in project and problem-driven methods within 10 hours?Apr 02, 2025 am 07:18 AM

How to teach computer novice programming basics within 10 hours? If you only have 10 hours to teach computer novice some programming knowledge, what would you choose to teach...

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Chat Commands and How to Use Them
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

EditPlus Chinese cracked version

EditPlus Chinese cracked version

Small size, syntax highlighting, does not support code prompt function

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.