With the rapid development of Internet technology, the scale and complexity of modern applications are increasing, and these applications usually involve a large amount of data search and analysis. In order to solve these problems, more and more developers are beginning to use full-text search engines to help them process massive data.
In this article, we will introduce how to use Elasticsearch for data search, and for the application in the Java API development process, we will introduce the API interface provided by Elasticsearch, as well as the implementation process and techniques.
- Elasticsearch Introduction
Elasticsearch is an open source full-text search engine built on the Apache Lucene search engine text search library. Elasticsearch has the characteristics of distributed, high availability, real-time search, and analysis. It can quickly store, retrieve, and analyze large amounts of data. In data search scenarios, Elasticsearch is a very popular and widely used solution as it provides a powerful and easy-to-use API interface that can be quickly integrated into Java applications.
- Basic concepts of Elasticsearch
When using Elasticsearch for data search, there are some basic concepts and terms that need to be understood:
(1) Index
In Elasticsearch, an index is a logical container used to store data, which is similar to a table in a relational database. Each index can contain multiple documents, and each document is a data structure in JSON format.
(2) Type
In Elasticsearch, each index can contain multiple types (types), and each type can define its own fields. Types have been deprecated in recent versions of Elasticsearch, but are still used as selectors in some APIs.
(3) Sharding and replicas
In Elasticsearch, an index can be divided into multiple shards (shards), and each shard is an independent Lucene index. Sharding distributes and stores indexed data on multiple servers to achieve distributed storage and query. In addition, Elasticsearch also supports replicas. Each shard can have multiple replicas to improve search performance and data availability.
(4) Nodes and clusters
Elasticsearch is a distributed search engine that can run on multiple nodes. A node is a single Elasticsearch instance, and the entire cluster is composed of multiple nodes. Nodes can communicate with each other and work together to complete search tasks.
- Elasticsearch Java API
Elasticsearch provides a rich Java API interface that can be easily integrated with Java applications. Java developers can use the following APIs for data indexing, query and management:
(1) Index API
The Index API is used to index documents in JSON format into the specified Elasticsearch index. It supports batch indexing, which can index multiple documents into the same index at one time.
(2)Search API
Search API is used to perform search operations. It supports a variety of search methods, including full-text search, field search, fuzzy search, etc.
(3) Delete API
Delete API is used to delete the specified Elasticsearch index.
(4) Get API
Get API is used to obtain documents based on the specified index, type and ID.
(5)Update API
Update API is used to update the specified document.
In addition, Elasticsearch also provides many other API interfaces, including geographical location search, text highlighting, aggregation, etc.
- Using Elasticsearch for data search
Before using Elasticsearch for data search, you need to install Elasticsearch and start it. Then use the Java API to connect to the Elasticsearch server, create the index and add data to the index. Next, you can search using the Search API. The following is a basic Java code example:
import java.net.InetAddress; import org.elasticsearch.action.search.SearchResponse; import org.elasticsearch.client.transport.TransportClient; import org.elasticsearch.common.settings.Settings; import org.elasticsearch.common.transport.TransportAddress; import org.elasticsearch.index.query.QueryBuilders; import org.elasticsearch.search.SearchHit; import org.elasticsearch.transport.client.PreBuiltTransportClient; public class ElasticsearchSearchDemo { public static void main(String[] args) throws Exception { // 设置集群名称 Settings settings = Settings.builder().put("cluster.name", "elasticsearch").build(); // 创建客户端 TransportClient client = new PreBuiltTransportClient(settings) .addTransportAddress(new TransportAddress(InetAddress.getByName("localhost"), 9300)); // 搜索数据 SearchResponse response = client.prepareSearch("books") .setQuery(QueryBuilders.matchQuery("title", "Java")) .get(); // 打印结果 for (SearchHit hit : response.getHits().getHits()) { System.out.println(hit.getSourceAsString()); } // 关闭客户端 client.close(); } }
The above code creates a TransportClient object, connects to the local Elasticsearch service, and uses the prepareSearch method to perform query operations. This query operation performs a fuzzy search on the title field of the books index and outputs the search results.
- Summary
In today’s data era, the demand for data search and analysis is increasing. As a powerful full-text search engine, Elasticsearch has the advantages of distribution, high availability, real-time search, and analysis. In the Java API development scenario, Elasticsearch provides rich and easy-to-use API interfaces, providing developers with convenient data search capabilities. I hope this article can help Java developers better use Elasticsearch for data search.
The above is the detailed content of Using Elasticsearch for data search in Java API development. For more information, please follow other related articles on the PHP Chinese website!

Redis与Elasticsearch的区别与使用场景随着互联网信息的快速发展和海量化,数据的高效存储和检索变得越来越重要。为此,NoSQL(NotOnlySQL)类型的数据库出现了,其中又以Redis和Elasticsearch较为流行。本文将对Redis和Elasticsearch进行比较,并探讨它们的使用场景。Redis与Elasticsearch

随着大数据和云计算技术的发展,搜索引擎也在不断创新。Elasticsearch,作为一个基于Lucene的全文搜索引擎,已经成为了一种流行的选择。这里将会介绍如何在PHP编程中使用Elasticsearch。安装Elasticsearch首先,我们需要安装和设置Elasticsearch。可以在官方网站下载和安装Elasticsearch,具体安装方法可以参

商品检索大家应该都在各种电商网站检索过商品,检索商品一般都是通过什么实现呢?搜索引擎Elasticsearch。那么问题来了,商品上架,数据一般写入到MySQL的数据库中,那么用于检索的数据又是怎么同步到Elasticsearch的呢?MySQL同步ES1.同步双写这是能想到的最直接的方式,在写入MySQL,直接也同步往ES里写一份数据。同步双写对于这种方式:优点:实现简单缺点:业务耦合,商品的管理中耦合大量数据同步代码影响性能,写入两个存储,响应时间变长不便扩展:搜索可能有一些个性化需求,需要

随着互联网的发展,企业面对的文本数据越来越庞大。如何快速、准确地检索出相关内容,成为企业在信息化领域的重要课题之一。Elasticsearch作为一个基于Lucene的开源搜索引擎,具有高可用性、高可扩展性和快速检索的特点,成为企业全文检索的首选方案之一。而PHP作为一门流行的服务器端编程语言,也能够快速进行Web开发和API开发,成为与Elasticsea

如何使用Elasticsearch和PHP构建智能问答系统引言:随着人工智能技术的快速发展,智能问答系统正逐渐成为人们获取信息的重要方式。Elasticsearch作为一个强大的搜索引擎,拥有快速、高效的全文搜索和分析能力,可以为智能问答系统提供强大的支持。本文将介绍如何使用Elasticsearch和PHP构建一个简单的智能问答系统,并提供相应的代码示例。

PHP和Elasticsearch实现的高性能文本分类技术引言:在当前的信息时代,文本分类技术被广泛应用于搜索引擎、推荐系统、情感分析等领域。而PHP是一种广泛使用的服务器端脚本语言,具有简单易学、效率高等特点。在本文中,我们将介绍如何利用PHP和Elasticsearch实现高性能的文本分类技术。一、Elasticsearch简介Elasticsearch

1.业务层同步由于对MySQL数据的操作也是在业务层完成的,所以在业务层同步操作另外的数据源也是很自然的,比较常见的做法就是在ORM的hooks钩子里编写相关同步代码。这种方式的缺点是,当服务越来越多时,同步的部分可能会过于分散从而导致难以更新迭代,例如对ES索引进行不兼容迁移时就可能会牵一发而动全身。2.中间件同步当应用架构演变为微服务时,各个服务里可能不再直接调用MySQL,而是通过一层middleware中间件,这时候就可以在中间件操作MySQL的同时同步其它数据源。这种方式需要中间件去适

1,引入依赖org.springframework.bootspring-boot-starter-data-elasticsearch2,编写实体映射类@Data@Document(indexName="index",createIndex=true)publicclassIndex{@IdprivateStringid;@Field(type=FieldType.Text,analyzer="ik_max_word",searchAnalyzer=&q


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Zend Studio 13.0.1
Powerful PHP integrated development environment

Atom editor mac version download
The most popular open source editor

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Dreamweaver Mac version
Visual web development tools
