Data visualization technology in Python web development
Data visualization technology in Python web development
With the rapid development of data analysis and mining, data visualization has become an indispensable part of it. As a powerful programming language, Python has also become one of the favorite tools of many data scientists and analysts. In Python web development, the application of data visualization technology is also becoming more and more important. This article will introduce data visualization techniques commonly used in Python web development and how to use them.
- Matplotlib
Matplotlib is one of the most commonly used drawing libraries in Python and can be used to draw various types of charts. It is designed to be simple, easy to extend, and supports various output formats, including PNG, PDF, SVG, etc. Using Matplotlib, you can easily create various types of charts such as line charts, scatter plots, histograms, etc.
Install Matplotlib:
You can install Matplotlib from the command line using the pip command:
pip install matplotlib
Using Matplotlib:
Here are some examples of Matplotlib:
Drawing a line chart:
import matplotlib.pyplot as plt x = [1, 2, 3, 4, 5, 6] y = [1, 3, 2, 4, 5, 3] plt.plot(x, y) plt.show()
Drawing a scatter plot:
import matplotlib.pyplot as plt import numpy as np x = np.random.rand(50) y = np.random.rand(50) colors = np.random.rand(50) area = np.pi * (15 * np.random.rand(50)) ** 2 plt.scatter(x, y, s=area, c=colors, alpha=0.5) plt.show()
More Matplotlib usage tutorials can be found in the official documentation.
- Seaborn
Seaborn is an extension library based on Matplotlib, providing a higher-level interface and more drawing options. Seaborn supports many types of statistical charts, including heat maps, bar charts, box plots, etc. Its design focuses on aesthetics and readability, helping users better understand their data.
Install Seaborn:
Seaborn can be installed on the command line using the pip command:
pip install seaborn
Using Seaborn:
Here are some examples of using Seaborn:
Draw a heat map:
import seaborn as sns import numpy as np np.random.seed(0) data = np.random.rand(10, 12) sns.heatmap(data, cmap='YlGnBu')
Draw a bar chart:
import seaborn as sns import numpy as np np.random.seed(0) data = np.random.normal(size=[20, 5]) sns.barplot(x="day", y="total_bill", data=tips)
More Seaborn usage tutorials can be found in the official documentation.
- Plotly
Plotly is an interactive chart library that supports multiple types of charts, such as heat maps, bar charts, scatter plots, etc. Its biggest feature is that it supports web-based interactive charts, making it easy to create interactive charts on web pages and interact directly with users.
Installing Plotly:
You can use the pip command to install Plotly on the command line:
pip install plotly
Using Plotly:
Here are some examples of Plotly:
Draw a scatter plot:
import plotly.graph_objs as go import numpy as np np.random.seed(0) x = np.random.randn(500) y = np.random.randn(500) fig = go.Figure(data=go.Scatter(x=x, y=y, mode='markers')) fig.show()
Draw a box plot:
import plotly.graph_objs as go import pandas as pd df = pd.read_csv("https://raw.githubusercontent.com/plotly/datasets/master/iris.csv") fig = go.Figure() for species in df.species.unique(): fig.add_trace(go.Box(y=df[df.species == species].sepal_width, name=species)) fig.show()
More Plotly usage tutorials can be found in the official documentation.
Conclusion
Data visualization technology in Python web development can not only help us better understand data, but also support decision-making and planning. This article introduces data visualization technologies commonly used in Python web development, including Matplotlib, Seaborn, and Plotly. Using these tools, we can quickly create various types of charts and display trends and distributions of data. These tools are also very suitable for embedding interactive charts in web applications to interact directly with users, making data analysis more intuitive and understandable.
The above is the detailed content of Data visualization technology in Python web development. For more information, please follow other related articles on the PHP Chinese website!

TomergelistsinPython,youcanusethe operator,extendmethod,listcomprehension,oritertools.chain,eachwithspecificadvantages:1)The operatorissimplebutlessefficientforlargelists;2)extendismemory-efficientbutmodifiestheoriginallist;3)listcomprehensionoffersf

In Python 3, two lists can be connected through a variety of methods: 1) Use operator, which is suitable for small lists, but is inefficient for large lists; 2) Use extend method, which is suitable for large lists, with high memory efficiency, but will modify the original list; 3) Use * operator, which is suitable for merging multiple lists, without modifying the original list; 4) Use itertools.chain, which is suitable for large data sets, with high memory efficiency.

Using the join() method is the most efficient way to connect strings from lists in Python. 1) Use the join() method to be efficient and easy to read. 2) The cycle uses operators inefficiently for large lists. 3) The combination of list comprehension and join() is suitable for scenarios that require conversion. 4) The reduce() method is suitable for other types of reductions, but is inefficient for string concatenation. The complete sentence ends.

PythonexecutionistheprocessoftransformingPythoncodeintoexecutableinstructions.1)Theinterpreterreadsthecode,convertingitintobytecode,whichthePythonVirtualMachine(PVM)executes.2)TheGlobalInterpreterLock(GIL)managesthreadexecution,potentiallylimitingmul

Key features of Python include: 1. The syntax is concise and easy to understand, suitable for beginners; 2. Dynamic type system, improving development speed; 3. Rich standard library, supporting multiple tasks; 4. Strong community and ecosystem, providing extensive support; 5. Interpretation, suitable for scripting and rapid prototyping; 6. Multi-paradigm support, suitable for various programming styles.

Python is an interpreted language, but it also includes the compilation process. 1) Python code is first compiled into bytecode. 2) Bytecode is interpreted and executed by Python virtual machine. 3) This hybrid mechanism makes Python both flexible and efficient, but not as fast as a fully compiled language.

Useaforloopwheniteratingoverasequenceorforaspecificnumberoftimes;useawhileloopwhencontinuinguntilaconditionismet.Forloopsareidealforknownsequences,whilewhileloopssuitsituationswithundeterminediterations.

Pythonloopscanleadtoerrorslikeinfiniteloops,modifyinglistsduringiteration,off-by-oneerrors,zero-indexingissues,andnestedloopinefficiencies.Toavoidthese:1)Use'i


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

SublimeText3 Chinese version
Chinese version, very easy to use

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

Zend Studio 13.0.1
Powerful PHP integrated development environment

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool
