search
HomeJavajavaTutorialDetailed explanation of Java binary tree implementation and specific application cases

Detailed explanation of Java binary tree implementation and specific application cases

Binary tree is a data structure often used in computer science, which can perform very efficient search and sorting operations. In this article, we will discuss how to implement a binary tree in Java and some of its specific application cases.

Definition of Binary Tree

Binary tree is a very important data structure, consisting of the root node (the top node of the tree) and several left subtrees and right subtrees. Each node has at most two child nodes, the child node on the left is called the left subtree, and the child node on the right is called the right subtree. If a node does not have any child nodes, it is called a leaf node or terminal node.

Binary tree implementation in Java

The Node class can be used in Java to represent binary tree nodes. This class contains an int type value and two Node type references left and right, which represent the left side respectively. child node and right child node. The following is a sample code:

class TreeNode {
    int val;
    TreeNode left;
    TreeNode right;
    TreeNode(int x) { val = x; }
}

Implement the basic operations of a binary tree

  1. Create a binary tree

You can create a binary tree recursively, first create the root node , and then create left subtree and right subtree respectively. The following is a sample code:

public class TreeBuilder {
    public TreeNode buildTree(int[] array) {
        if (array == null || array.length == 0) {
            return null;
        }
        return build(array, 0, array.length - 1);
    }

    private TreeNode build(int[] array, int start, int end) {
        if (start > end) {
            return null;
        }
        int mid = (start + end) / 2;
        TreeNode root = new TreeNode(array[mid]);
        root.left = build(array, start, mid - 1);
        root.right = build(array, mid + 1, end);
        return root;
    }
}
  1. Find Node

The search operation of the binary tree is very efficient. Generally, it is determined whether to search the left child by comparing the size of the node value and the target value. The tree is still the right subtree. The following is a sample code:

public class TreeSearch {
    public TreeNode search(TreeNode root, int target) {
        if (root == null || root.val == target) {
            return root;
        }
        if (root.val > target) {
            return search(root.left, target);
        } else {
            return search(root.right, target);
        }
    }
}
  1. Insert node

When inserting a new node into a binary tree, you need to compare the value of the node and the size of the inserted value, and decide based on the comparison result Whether to insert the new node into the left subtree or the right subtree. The following is a sample code:

public class TreeInsert {
    public TreeNode insert(TreeNode root, int target) {
        if (root == null) {
            return new TreeNode(target);
        }
        if (root.val > target) {
            root.left = insert(root.left, target);
        } else if (root.val < target) {
            root.right = insert(root.right, target);
        }
        return root;
    }
}
  1. Delete node

Deleting a node is a relatively complex operation and needs to be discussed in several situations. Assume that node A is to be deleted, which can be divided into the following three situations:

  • A is a leaf node and can be deleted directly.
  • A has only one child node, just replace the child node with its position.
  • A has two child nodes. You need to find the smallest node B in its right subtree, replace A with the value of B, and then delete B.

The following is a sample code:

public class TreeDelete {
    public TreeNode delete(TreeNode root, int target) {
        if (root == null) {
            return null;
        }
        if (root.val > target) {
            root.left = delete(root.left, target);
        } else if (root.val < target) {
            root.right = delete(root.right, target);
        } else {
            if (root.left == null && root.right == null) {
                return null;
            } else if (root.left == null) {
                return root.right;
            } else if (root.right == null) {
                return root.left;
            } else {
                TreeNode min = findMin(root.right);
                root.val = min.val;
                root.right = delete(root.right, min.val);
            }
        }
        return root;
    }

    private TreeNode findMin(TreeNode node) {
        while (node.left != null) {
            node = node.left;
        }
        return node;
    }
}

Specific application cases

Binary trees can solve some common data structure problems, such as finding the kth element, finding the smallest k elements, search the depth of the binary tree, etc.

The following are specific application cases:

  1. Find the k-th element

The result of in-order traversal of a binary tree is in order, so it can be used Inorder traversal to find the kth element. The following is a sample code:

public class TreeFindKth {
    private int cnt = 0;

    public int kthSmallest(TreeNode root, int k) {
        if (root == null) {
            return Integer.MAX_VALUE;
        }
        int left = kthSmallest(root.left, k);
        if (left != Integer.MAX_VALUE) {
            return left;
        }
        cnt++;
        if (cnt == k) {
            return root.val;
        }
        return kthSmallest(root.right, k);
    }
}
  1. Find the smallest k elements

To find the smallest k elements in a binary tree, you can also use in-order traversal, taking the top k elements. The following is a sample code:

public class TreeFindMinK {
    public List<Integer> kSmallest(TreeNode root, int k) {
        List<Integer> result = new ArrayList<>();
        Stack<TreeNode> stack = new Stack<>();
        TreeNode current = root;
        while (current != null || !stack.isEmpty()) {
            while (current != null) {
                stack.push(current);
                current = current.left;
            }
            current = stack.pop();
            result.add(current.val);
            if (result.size() == k) {
                return result;
            }
            current = current.right;
        }
        return result;
    }
}
  1. Finding the depth of a binary tree

You can use recursion to find the depth of a binary tree. The following is a sample code:

public class TreeDepth {
    public int maxDepth(TreeNode root) {
        if (root == null) {
            return 0;
        }
        return Math.max(maxDepth(root.left), maxDepth(root.right)) + 1;
    }
}

Summary

This article introduces the implementation of binary trees in Java and some specific application cases. Binary tree is a very efficient data structure that is often used when processing large amounts of data. In practical applications, we can choose different implementation methods according to the characteristics of specific problems to obtain better performance.

The above is the detailed content of Detailed explanation of Java binary tree implementation and specific application cases. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
How does IntelliJ IDEA identify the port number of a Spring Boot project without outputting a log?How does IntelliJ IDEA identify the port number of a Spring Boot project without outputting a log?Apr 19, 2025 pm 11:45 PM

Start Spring using IntelliJIDEAUltimate version...

How to elegantly obtain entity class variable names to build database query conditions?How to elegantly obtain entity class variable names to build database query conditions?Apr 19, 2025 pm 11:42 PM

When using MyBatis-Plus or other ORM frameworks for database operations, it is often necessary to construct query conditions based on the attribute name of the entity class. If you manually every time...

How to use the Redis cache solution to efficiently realize the requirements of product ranking list?How to use the Redis cache solution to efficiently realize the requirements of product ranking list?Apr 19, 2025 pm 11:36 PM

How does the Redis caching solution realize the requirements of product ranking list? During the development process, we often need to deal with the requirements of rankings, such as displaying a...

How to safely convert Java objects to arrays?How to safely convert Java objects to arrays?Apr 19, 2025 pm 11:33 PM

Conversion of Java Objects and Arrays: In-depth discussion of the risks and correct methods of cast type conversion Many Java beginners will encounter the conversion of an object into an array...

How do I convert names to numbers to implement sorting and maintain consistency in groups?How do I convert names to numbers to implement sorting and maintain consistency in groups?Apr 19, 2025 pm 11:30 PM

Solutions to convert names to numbers to implement sorting In many application scenarios, users may need to sort in groups, especially in one...

E-commerce platform SKU and SPU database design: How to take into account both user-defined attributes and attributeless products?E-commerce platform SKU and SPU database design: How to take into account both user-defined attributes and attributeless products?Apr 19, 2025 pm 11:27 PM

Detailed explanation of the design of SKU and SPU tables on e-commerce platforms This article will discuss the database design issues of SKU and SPU in e-commerce platforms, especially how to deal with user-defined sales...

How to set the default run configuration list of SpringBoot projects in Idea for team members to share?How to set the default run configuration list of SpringBoot projects in Idea for team members to share?Apr 19, 2025 pm 11:24 PM

How to set the SpringBoot project default run configuration list in Idea using IntelliJ...

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Atom editor mac version download

Atom editor mac version download

The most popular open source editor

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version

mPDF

mPDF

mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

SecLists

SecLists

SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.