Neural network algorithm example in Python
Neural network is an artificial intelligence model that simulates the human nervous system. It can automatically identify patterns and perform tasks such as classification, regression, and clustering by learning data samples. . As a programming language that is easy to learn and has a powerful scientific computing library, Python excels in developing neural network algorithms. This article will introduce examples of neural network algorithms in Python.
- Install related libraries
Commonly used neural network libraries in Python include Keras, Tensorflow, PyTorch, etc. The Keras library is based on Tensorflow, which can simplify the process of building neural networks. , so this article will choose the Keras library as the development tool for neural network algorithms. Before using the Keras library, you need to install the Tensorflow library as a backend. Execute the following command on the command line to install the dependent libraries:
pip install tensorflow pip install keras
- Dataset Preprocessing
Before training the neural network, the data needs to be preprocessed . Common data preprocessing includes data normalization, data missing value processing, data feature extraction, etc. In this article, we will use the iris data set for example demonstration. The data set contains 150 records, each record has four features: sepal length, sepal width, petal length, petal width, and the corresponding classification label: Iris Setosa, Iris Versicolour, Iris Virginica. In this dataset, every record is of numeric type, so we just need to normalize the data.
from sklearn.datasets import load_iris from sklearn.preprocessing import MinMaxScaler import numpy as np # 导入数据集 data = load_iris().data labels = load_iris().target # 归一化数据 scaler = MinMaxScaler() data = scaler.fit_transform(data) # 将标签转化为 one-hot 向量 one_hot_labels = np.zeros((len(labels), 3)) for i in range(len(labels)): one_hot_labels[i, labels[i]] = 1
- Building a neural network model
In Keras, you can use the Sequential model to build a neural network model. In this model, we can add multiple layers, each layer has a specific role, such as fully connected layer, activation function layer, Dropout layer, etc. In this example, we use two fully connected layers and one output layer to build a neural network model, in which the number of neurons in the hidden layer is 4.
from keras.models import Sequential from keras.layers import Dense, Dropout from keras.optimizers import Adam # 构建神经网络模型 model = Sequential() model.add(Dense(4, activation='relu')) model.add(Dense(4, activation='relu')) model.add(Dense(3, activation='softmax')) # 配置优化器和损失函数 optimizer = Adam(lr=0.001) model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy'])
- Training model
Before training the model, we need to divide the data set into a training set and a test set in order to evaluate the accuracy of the model. In this example, we use 80% of the data as the training set and 20% of the data as the test set. When training, we need to specify parameters such as batch size and number of iterations to control the training speed and model accuracy.
from sklearn.model_selection import train_test_split # 将数据集分为训练集和测试集 train_data, test_data, train_labels, test_labels = train_test_split(data, one_hot_labels, test_size=0.2) # 训练神经网络 model.fit(train_data, train_labels, batch_size=5, epochs=100) # 评估模型 accuracy = model.evaluate(test_data, test_labels)[1] print('准确率:%.2f' % accuracy)
- The complete code of the example
The complete code of this example is as follows:
from sklearn.datasets import load_iris from sklearn.preprocessing import MinMaxScaler from sklearn.model_selection import train_test_split import numpy as np from keras.models import Sequential from keras.layers import Dense, Dropout from keras.optimizers import Adam # 导入数据集 data = load_iris().data labels = load_iris().target # 归一化数据 scaler = MinMaxScaler() data = scaler.fit_transform(data) # 将标签转化为 one-hot 向量 one_hot_labels = np.zeros((len(labels), 3)) for i in range(len(labels)): one_hot_labels[i, labels[i]] = 1 # 将数据集分为训练集和测试集 train_data, test_data, train_labels, test_labels = train_test_split(data, one_hot_labels, test_size=0.2) # 构建神经网络模型 model = Sequential() model.add(Dense(4, activation='relu')) model.add(Dense(4, activation='relu')) model.add(Dense(3, activation='softmax')) # 配置优化器和损失函数 optimizer = Adam(lr=0.001) model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy']) # 训练神经网络 model.fit(train_data, train_labels, batch_size=5, epochs=100) # 评估模型 accuracy = model.evaluate(test_data, test_labels)[1] print('准确率:%.2f' % accuracy)
- Conclusion
This article introduces examples of neural network algorithms in Python, and uses the iris data set as an example for demonstration. During the implementation process, we used the Keras library and Tensorflow library as neural network development tools, and used the MinMaxScaler library to normalize the data. The results of this example show that our neural network model achieved an accuracy of 97.22%, proving the effectiveness and applicability of the neural network.
The above is the detailed content of Neural network algorithm examples in Python. For more information, please follow other related articles on the PHP Chinese website!

Python and C each have their own advantages, and the choice should be based on project requirements. 1) Python is suitable for rapid development and data processing due to its concise syntax and dynamic typing. 2)C is suitable for high performance and system programming due to its static typing and manual memory management.

Choosing Python or C depends on project requirements: 1) If you need rapid development, data processing and prototype design, choose Python; 2) If you need high performance, low latency and close hardware control, choose C.

By investing 2 hours of Python learning every day, you can effectively improve your programming skills. 1. Learn new knowledge: read documents or watch tutorials. 2. Practice: Write code and complete exercises. 3. Review: Consolidate the content you have learned. 4. Project practice: Apply what you have learned in actual projects. Such a structured learning plan can help you systematically master Python and achieve career goals.

Methods to learn Python efficiently within two hours include: 1. Review the basic knowledge and ensure that you are familiar with Python installation and basic syntax; 2. Understand the core concepts of Python, such as variables, lists, functions, etc.; 3. Master basic and advanced usage by using examples; 4. Learn common errors and debugging techniques; 5. Apply performance optimization and best practices, such as using list comprehensions and following the PEP8 style guide.

Python is suitable for beginners and data science, and C is suitable for system programming and game development. 1. Python is simple and easy to use, suitable for data science and web development. 2.C provides high performance and control, suitable for game development and system programming. The choice should be based on project needs and personal interests.

Python is more suitable for data science and rapid development, while C is more suitable for high performance and system programming. 1. Python syntax is concise and easy to learn, suitable for data processing and scientific computing. 2.C has complex syntax but excellent performance and is often used in game development and system programming.

It is feasible to invest two hours a day to learn Python. 1. Learn new knowledge: Learn new concepts in one hour, such as lists and dictionaries. 2. Practice and exercises: Use one hour to perform programming exercises, such as writing small programs. Through reasonable planning and perseverance, you can master the core concepts of Python in a short time.

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

Atom editor mac version download
The most popular open source editor

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

Zend Studio 13.0.1
Powerful PHP integrated development environment