search
HomeBackend DevelopmentPython TutorialComputer Vision Example in Python: Face Recognition

Python is a high-level programming language, easy to learn and understand, and suitable for beginners and professional developers. Python is widely used in the field of artificial intelligence, and computer vision is one of the very important applications. Face recognition is one of the most important applications in the field of computer vision. This article will introduce how to use Python to implement face recognition.

1. Introduction to face recognition

Face recognition technology refers to the technology that automatically locates, tracks, identifies and verifies faces in digital images. Face recognition can obtain images through various methods such as optical, infrared and artificial enhancement. The feature information of the face image is obtained through computer vision algorithms and compared with the existing face feature database to perform identity verification or identity recognition operations.

Face recognition technology has been widely used and plays an increasingly important role in finance, security, smart home and other fields. There are a wealth of computer vision libraries in Python that can support the implementation of face recognition technology. The implementation method of face recognition technology will be introduced below.

2. Face recognition library in Python

Python provides a variety of face recognition libraries, including OpenCV, dlib, etc. These libraries support computer vision technologies such as face detection, face recognition, face tracking, and face labeling.

OpenCV is one of the most popular computer vision libraries in Python. It provides a variety of algorithm libraries for implementing face recognition technology. Image processing, face detection, feature extraction, classifier training, etc. all have very complete support. dlib is an excellent face recognition library that uses deep learning technology and has good support for face detection.

3. Implementing face recognition in Python

Below we will use a simple example to implement face recognition in Python.

First, we need to install OpenCV and dlib libraries. We can install these libraries using pip as follows:

pip install opencv-python
pip install dlib

Next, we need to prepare a set of face images as templates, which can be used for comparison and recognition. We can save these image files in local file system.

In Python, we need to use the computer vision library to process the image, as shown below:

import cv2 
import dlib
import numpy as np 

detector = dlib.get_frontal_face_detector() 

predictor = dlib.shape_predictor('shape_predictor_68_face_landmarks.dat')

face_path = './faces'

def get_face_list(face_path): 
    return os.listdir(face_path) 

faces_list = get_face_list(face_path)

face_descriptors = []

for face in faces_list: 
    img = cv2.imread(os.path.join(face_path, face)) 
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) 
    faces = detector(gray) 
    for rect in faces: 
        shape = predictor(gray, rect) 
        face_descriptor = np.array(face_rec_model.compute_face_descriptor(img, shape)) 
        face_descriptors.append(face_descriptor)

The above code implements the function of detecting faces in the image. We used the face detector in the dlib library to detect faces in the image and obtain facial features, and record these features.

After obtaining the facial features, we need to use these features for face recognition, as shown below:

def recognize_face(): 
    img = cv2.imread('test.jpg') 
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) 
    faces = detector(gray) 
    for rect in faces: 
        shape = predictor(gray, rect) 
        face_descriptor = np.array(face_rec_model.compute_face_descriptor(img, shape)) 
        for i, face in enumerate(face_descriptors): 
            dist = np.linalg.norm(face - face_descriptor) 
            if dist < 0.6: 
                return "This is " + faces_list[i][:-4] 
    return "Unknown face"

The above code realizes the matching of the face in the image with the existing Face database comparison function. We used numpy to calculate the Euclidean distance between the face feature values ​​in the image and the feature values ​​in the template library. If the distance is less than a certain threshold (usually 0.6), it is considered to be the same face. Finally, we will output the comparison results.

4. Summary

This article introduces how to use Python to implement face recognition technology. We used the OpenCV and dlib libraries to implement face detection and feature extraction functions, and used the numpy library to calculate the Euclidean distance between face feature values, thus realizing the face recognition technology. Python is widely used in the field of computer vision and also plays a very important role in actual development.

The above is the detailed content of Computer Vision Example in Python: Face Recognition. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Merging Lists in Python: Choosing the Right MethodMerging Lists in Python: Choosing the Right MethodMay 14, 2025 am 12:11 AM

TomergelistsinPython,youcanusethe operator,extendmethod,listcomprehension,oritertools.chain,eachwithspecificadvantages:1)The operatorissimplebutlessefficientforlargelists;2)extendismemory-efficientbutmodifiestheoriginallist;3)listcomprehensionoffersf

How to concatenate two lists in python 3?How to concatenate two lists in python 3?May 14, 2025 am 12:09 AM

In Python 3, two lists can be connected through a variety of methods: 1) Use operator, which is suitable for small lists, but is inefficient for large lists; 2) Use extend method, which is suitable for large lists, with high memory efficiency, but will modify the original list; 3) Use * operator, which is suitable for merging multiple lists, without modifying the original list; 4) Use itertools.chain, which is suitable for large data sets, with high memory efficiency.

Python concatenate list stringsPython concatenate list stringsMay 14, 2025 am 12:08 AM

Using the join() method is the most efficient way to connect strings from lists in Python. 1) Use the join() method to be efficient and easy to read. 2) The cycle uses operators inefficiently for large lists. 3) The combination of list comprehension and join() is suitable for scenarios that require conversion. 4) The reduce() method is suitable for other types of reductions, but is inefficient for string concatenation. The complete sentence ends.

Python execution, what is that?Python execution, what is that?May 14, 2025 am 12:06 AM

PythonexecutionistheprocessoftransformingPythoncodeintoexecutableinstructions.1)Theinterpreterreadsthecode,convertingitintobytecode,whichthePythonVirtualMachine(PVM)executes.2)TheGlobalInterpreterLock(GIL)managesthreadexecution,potentiallylimitingmul

Python: what are the key featuresPython: what are the key featuresMay 14, 2025 am 12:02 AM

Key features of Python include: 1. The syntax is concise and easy to understand, suitable for beginners; 2. Dynamic type system, improving development speed; 3. Rich standard library, supporting multiple tasks; 4. Strong community and ecosystem, providing extensive support; 5. Interpretation, suitable for scripting and rapid prototyping; 6. Multi-paradigm support, suitable for various programming styles.

Python: compiler or Interpreter?Python: compiler or Interpreter?May 13, 2025 am 12:10 AM

Python is an interpreted language, but it also includes the compilation process. 1) Python code is first compiled into bytecode. 2) Bytecode is interpreted and executed by Python virtual machine. 3) This hybrid mechanism makes Python both flexible and efficient, but not as fast as a fully compiled language.

Python For Loop vs While Loop: When to Use Which?Python For Loop vs While Loop: When to Use Which?May 13, 2025 am 12:07 AM

Useaforloopwheniteratingoverasequenceorforaspecificnumberoftimes;useawhileloopwhencontinuinguntilaconditionismet.Forloopsareidealforknownsequences,whilewhileloopssuitsituationswithundeterminediterations.

Python loops: The most common errorsPython loops: The most common errorsMay 13, 2025 am 12:07 AM

Pythonloopscanleadtoerrorslikeinfiniteloops,modifyinglistsduringiteration,off-by-oneerrors,zero-indexingissues,andnestedloopinefficiencies.Toavoidthese:1)Use'i

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

DVWA

DVWA

Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software