search
HomeBackend DevelopmentGolangHow to implement concurrency safety in Go language?

With the continuous development of computer technology, we must shift from single thread to multi-thread for program processing. Compared with the traditional concurrency processing model, the powerful concurrency processing mechanism of Go language has attracted the attention of many developers. The Go language provides a lightweight implementation mechanism that makes authentic concurrent code easier to write.

However, it is inevitable that a multi-threaded environment will bring many race conditions (Race Condition). When multiple threads try to read and write the same shared resource at the same time, unexpected results may occur due to the uncertainty of the order of execution. Race Condition is one of the potential problems developers fear the most.

In order to avoid potential problems in concurrent processing, the Go language provides a rich variety of standard libraries: sync. This article will introduce the mechanism to achieve concurrency safety through the sync library.

Mutex and RWMutex

mutex is the most commonly used mechanism. At any time, only one coroutine can obtain the mutex object, and other coroutines need to wait for the previous coroutine to release the lock before they can continue execution. Mutex can be used to protect shared resources so that code can run safely and stably.

RWMutex is another mutex lock type, which is equivalent to the extension of mutex in the field of reading and writing. RWMutex contains two counters: read counter and write counter.

  • When the reading coroutine is still performing a reading operation, the writing operation will be locked and waits for the reading operation to end.
  • When the writing coroutine calls the lock operation, all ongoing read and write operations of the coroutine will be locked.

This mechanism ensures that multiple coroutines can perform read operations at the same time, and only a single coroutine can perform write operations.

var rwMutex sync.RWMutex
var count int
func read() {
    rwMutex.RLock()
    defer rwMutex.RUnlock()

    fmt.Println(count)
}

func write() {
    rwMutex.Lock()
    defer rwMutex.Unlock()

    count++
}

In the above example code, we use a RWMutex type lock to protect the read and write operations of the count variable. When a thread calls the write() function, the write counter is locked and all other coroutines are blocked from reading and writing. When a thread calls the read() function, the read counter will be locked and other coroutines will be allowed to perform read operations.

WaitGroup

WaitGroup is used to wait for a group of coroutines to complete execution. Suppose we have n coroutines that need to be executed, then in the main coroutine, we need to call waitGroup.Add(n). WaitGroup.Done() is called after each coroutine has completed execution.

func main() {
    var wg sync.WaitGroup

    for i := 0; i < 5; i++ {
        wg.Add(1)
        go func(n int) {
            fmt.Println("goroutine ", n)
            wg.Done()
        }(i)
    }
    wg.Wait()
}

In this example, we use WaitGroup to wait for the execution of each goroutine, and finally wait for all goroutines to complete before ending the main execution process.

Cond

When multiple coroutines need to stop or perform some specific operations, we can use Cond. It is common to use Cond in conjunction with locks and WaitGroup. It allows goroutines to block simultaneously until a condition variable changes.

var cond = sync.NewCond(&sync.RWMutex{})

func printOddNumbers() {
    for i := 0; i < 10; i++ {
        cond.L.Lock()
        if i%2 == 1 {
            fmt.Println(i)
            cond.Signal()
        } else {
            cond.Wait()
        }
        cond.L.Unlock()
    }
}

func printEvenNumbers() {
    for i := 0; i < 10; i++ {
        cond.L.Lock()
        if i%2 == 0 {
            fmt.Println(i)
            cond.Signal()
        } else {
            cond.Wait()
        }
        cond.L.Unlock()
    }
}

In the above code example, we used Cond to ensure that even numbers and odd numbers are output separately. Each coroutine uses sync.Mutex to lock the goroutine and wait for another coroutine to first access the shared variable and then monitor the value of the variable.

Once

In some cases, you need to ensure that certain operations are performed only once, such as reading a configuration file only once or initializing global state only once. The sync.Once type of Go language was born for this purpose. When the function is called for the first time it will execute the code inside it and will not be executed again on subsequent calls.

var once sync.Once

func doSomething() {
    once.Do(func() {
        fmt.Println("Do something")
    })
}

In the above example, we used sync.Once to safely execute the doSomething function. The first time doSomething is called, the function will be executed only once using once.Do().

Conclusion

In this article, we introduce the locks and mechanisms commonly used in the Go language to ensure the safety of concurrent code. The Mutex, RWMutex, WaitGroup, Cond, and Once types using the sync library are all very powerful and can be used to design safe and efficient concurrent programs. As concurrency mechanisms continue to evolve, understanding the latest advances in concurrent programming is key to keeping your development skills competitive.

The above is the detailed content of How to implement concurrency safety in Go language?. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
go语言有没有缩进go语言有没有缩进Dec 01, 2022 pm 06:54 PM

go语言有缩进。在go语言中,缩进直接使用gofmt工具格式化即可(gofmt使用tab进行缩进);gofmt工具会以标准样式的缩进和垂直对齐方式对源代码进行格式化,甚至必要情况下注释也会重新格式化。

go语言为什么叫gogo语言为什么叫goNov 28, 2022 pm 06:19 PM

go语言叫go的原因:想表达这门语言的运行速度、开发速度、学习速度(develop)都像gopher一样快。gopher是一种生活在加拿大的小动物,go的吉祥物就是这个小动物,它的中文名叫做囊地鼠,它们最大的特点就是挖洞速度特别快,当然可能不止是挖洞啦。

一文详解Go中的并发【20 张动图演示】一文详解Go中的并发【20 张动图演示】Sep 08, 2022 am 10:48 AM

Go语言中各种并发模式看起来是怎样的?下面本篇文章就通过20 张动图为你演示 Go 并发,希望对大家有所帮助!

【整理分享】一些GO面试题(附答案解析)【整理分享】一些GO面试题(附答案解析)Oct 25, 2022 am 10:45 AM

本篇文章给大家整理分享一些GO面试题集锦快答,希望对大家有所帮助!

tidb是go语言么tidb是go语言么Dec 02, 2022 pm 06:24 PM

是,TiDB采用go语言编写。TiDB是一个分布式NewSQL数据库;它支持水平弹性扩展、ACID事务、标准SQL、MySQL语法和MySQL协议,具有数据强一致的高可用特性。TiDB架构中的PD储存了集群的元信息,如key在哪个TiKV节点;PD还负责集群的负载均衡以及数据分片等。PD通过内嵌etcd来支持数据分布和容错;PD采用go语言编写。

go语言是否需要编译go语言是否需要编译Dec 01, 2022 pm 07:06 PM

go语言需要编译。Go语言是编译型的静态语言,是一门需要编译才能运行的编程语言,也就说Go语言程序在运行之前需要通过编译器生成二进制机器码(二进制的可执行文件),随后二进制文件才能在目标机器上运行。

go语言能不能编译go语言能不能编译Dec 09, 2022 pm 06:20 PM

go语言能编译。Go语言是编译型的静态语言,是一门需要编译才能运行的编程语言。对Go语言程序进行编译的命令有两种:1、“go build”命令,可以将Go语言程序代码编译成二进制的可执行文件,但该二进制文件需要手动运行;2、“go run”命令,会在编译后直接运行Go语言程序,编译过程中会产生一个临时文件,但不会生成可执行文件。

golang map怎么删除元素golang map怎么删除元素Dec 08, 2022 pm 06:26 PM

删除map元素的两种方法:1、使用delete()函数从map中删除指定键值对,语法“delete(map, 键名)”;2、重新创建一个新的map对象,可以清空map中的所有元素,语法“var mapname map[keytype]valuetype”。

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

EditPlus Chinese cracked version

EditPlus Chinese cracked version

Small size, syntax highlighting, does not support code prompt function

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version