search
HomeTechnology peripheralsAITop issue published! Professor Li Yibin's team from Shandong University developed a simple and highly maneuverable wheel-legged composite robot

Human beings have dreamed of developing mobile mechanisms that can adapt to a variety of wild terrains since ancient times. Wheeled mobile platform has good motion stability and movement efficiency, but is difficult to travel in rugged terrain; legged robot has good terrain adaptability and movement flexibility , but its motion stability and energy efficiency need to be improved.

In order to combine the advantages of wheel movement and leg and foot movement, the wheel-leg compound movement mechanism was born. Common wheel and leg composite mechanisms mainly include special-shaped wheels (such as RHex), spoked wheels (such as Whegs), deformed wheels (such as OmniWheg), wheel legs in series (such as Wheeled-ANYmal), etc., as shown in Figure X.

Top issue published! Professor Li Yibins team from Shandong University developed a simple and highly maneuverable wheel-legged composite robot

Figure 1 Common wheel-legged composite robot

Recently, the team of Professor Li Yibin of Shandong University, Professor Ma Shugen of Ritsumeikan University, Japan, Professor Liu Jinguo of Shenyang Institute of Automation, Chinese Academy of Sciences, and Associate Researcher Kong Lingyu of Zhijiang Laboratory, developed a new type of wheel-legged composite robot, named For Q-Whex, is shown in Figure 2.

Top issue published! Professor Li Yibins team from Shandong University developed a simple and highly maneuverable wheel-legged composite robot

Figure 2 Q-Whex robot

Q-Whex can move smoothly on flat ground like a wheeled mobile platform, and can climb over obstacles higher than its chassis height like a footed robot. Compared with other wheel-legged composite mobile robots, Q-Whex has advantages in terms of motion smoothness, mechanism complexity and control difficulty, as shown in Table 1.

Table 1 Comparison between Q-Whex and other types of wheel-legged composite mobile robots

Top issue published! Professor Li Yibins team from Shandong University developed a simple and highly maneuverable wheel-legged composite robot

This work was published in the Journal of Field Robotics under the title "Q-Whex: A simple and highly mobile quasi-wheeled hexapod robot".

▍Simple mechanism and convenient control

The Q-Whex robot shown in the paper is 277.5 mm long, 204.8 mm wide, 39.5 mm high, has a dead weight of 2.4kg, and can reach a forward speed of 0.44 m/s with a load of 2.65 kg. Q-Whex consists of a main body and six isomorphic sector-shaped half-wheel drive systems. The control circuit, IMU, battery, and camera are integrated inside the torso. The drive motor of the wheel leg structure is also placed inside the torso. Each half wheel has a 210° fan-shaped structure, and the output shaft of the motor is connected to the fan center to achieve rotation. When the fan-shaped When the arc edge touches the ground, it is wheeled movement. When the fan-shaped edge touches the ground, the effect of leg-type obstacle surmounting can be achieved.

The production and assembly of Q-Whex is very simple, as shown in Figure 3. The components inside the motor and torso are installed between two carbon fiber plates, and each sector-shaped half wheel is also made of carbon fiber plates.

Top issue published! Professor Li Yibins team from Shandong University developed a simple and highly maneuverable wheel-legged composite robot

Figure 3 Q-Whex decomposition diagram

Q-Whex's motion control is also very easy. Each sector-shaped half-wheel rotates continuously. Steering can be achieved by controlling the speed difference between the left sector-shaped half-wheel and the right sector-shaped half-wheel of the robot. By controlling the rotation angle of each sector-shaped half-wheel, The phase difference between them can generate different gaits. Figure 4 shows the four typical gaits of Q-Whex.

Top issue published! Professor Li Yibins team from Shandong University developed a simple and highly maneuverable wheel-legged composite robot

Figure 4 Q-Whex typical gait display

▍Wheel and leg combination, climbing and overcoming obstacles

Q-Whex adopts triangular gait and can move smoothly on flat ground like a wheeled mobile platform, as shown in Figure 5.

Top issue published! Professor Li Yibins team from Shandong University developed a simple and highly maneuverable wheel-legged composite robot

Figure 5 Q-Whex moves smoothly on flat ground

Q-Whex can also easily handle snow, ice, gravel and other surfaces, as shown in Figure 6.

Top issue published! Professor Li Yibins team from Shandong University developed a simple and highly maneuverable wheel-legged composite robot

Figure 6 Q-Whex operates on a variety of surfaces

Using symmetrical gait, you can go up and down 32-degree slopes, as shown in Figure 7.

Top issue published! Professor Li Yibins team from Shandong University developed a simple and highly maneuverable wheel-legged composite robot

Figure 7 Q-Whex on a 32-degree slope

Can climb continuous steps, as shown in Figure 8.

Top issue published! Professor Li Yibins team from Shandong University developed a simple and highly maneuverable wheel-legged composite robot

Figure 8 Q-Whex climbs continuous steps

Various rugged terrains are not a problem, as shown in Figure 9.

Top issue published! Professor Li Yibins team from Shandong University developed a simple and highly maneuverable wheel-legged composite robot

Figure 9 Q-Whex running in rugged terrain

▍Symmetrical configuration, no fear of overturning

Since the structural design of the Q-Whex robot adopts a symmetrical configuration in the three directions of front and back, left and right, and up and down, there is no difference between front and back and front and back during its movement. When the robot accidentally overturns while driving, it can continue moving forward in the "backside up" configuration, thus having excellent insurance and fault tolerance for risks and accidents in complex environment movements. Figure 10 shows that the robot overturned during the climbing process and then completed the climb in a "back-up" posture.

Figure 10 Q-Whex can continue driving after overturning

Top issue published! Professor Li Yibins team from Shandong University developed a simple and highly maneuverable wheel-legged composite robot

▍Airborne camera, remote detection

Small camera equipment has been installed on the Q-Whex robot and can transmit the collected images to the remote operator in real time via WiFi or 4G network. Therefore, Q-Whex can perform unmanned detection tasks, as shown in Figure 11.

Figure 11 Q-Whex can use airborne cameras for remote detection

Top issue published! Professor Li Yibins team from Shandong University developed a simple and highly maneuverable wheel-legged composite robot

You can also tease the cat remotely, as shown in Figure 12.

Picture 12 Q-Whex and cat

Top issue published! Professor Li Yibins team from Shandong University developed a simple and highly maneuverable wheel-legged composite robot

Q-Whex is essentially a new wheel-leg composite mobility concept. Its high maneuverability and strong passability are derived from the continuous rotation and mutual phase coordination of six independently driven sector-shaped half-wheels. This concept can be applied to mobile platforms required for industrial inspections, logistics transportation, field detection, etc. The appropriate configuration and size should be selected according to actual application requirements. The robot does not need to adopt complex perception or control strategies, and its simplicity in structure and control improves the robustness and reliability of the system.

The first author of the paper is Associate Researcher Zhang Guoteng of Shandong University, email:

guoteng@email.sdu.edu.cn.

Paper link:

https://doi.org/10.1002/rob.22186

The above is the detailed content of Top issue published! Professor Li Yibin's team from Shandong University developed a simple and highly maneuverable wheel-legged composite robot. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:搜狐. If there is any infringement, please contact admin@php.cn delete
A Comprehensive Guide to ExtrapolationA Comprehensive Guide to ExtrapolationApr 15, 2025 am 11:38 AM

Introduction Suppose there is a farmer who daily observes the progress of crops in several weeks. He looks at the growth rates and begins to ponder about how much more taller his plants could grow in another few weeks. From th

The Rise Of Soft AI And What It Means For Businesses TodayThe Rise Of Soft AI And What It Means For Businesses TodayApr 15, 2025 am 11:36 AM

Soft AI — defined as AI systems designed to perform specific, narrow tasks using approximate reasoning, pattern recognition, and flexible decision-making — seeks to mimic human-like thinking by embracing ambiguity. But what does this mean for busine

Evolving Security Frameworks For The AI FrontierEvolving Security Frameworks For The AI FrontierApr 15, 2025 am 11:34 AM

The answer is clear—just as cloud computing required a shift toward cloud-native security tools, AI demands a new breed of security solutions designed specifically for AI's unique needs. The Rise of Cloud Computing and Security Lessons Learned In th

3 Ways Generative AI Amplifies Entrepreneurs: Beware Of Averages!3 Ways Generative AI Amplifies Entrepreneurs: Beware Of Averages!Apr 15, 2025 am 11:33 AM

Entrepreneurs and using AI and Generative AI to make their businesses better. At the same time, it is important to remember generative AI, like all technologies, is an amplifier – making the good great and the mediocre, worse. A rigorous 2024 study o

New Short Course on Embedding Models by Andrew NgNew Short Course on Embedding Models by Andrew NgApr 15, 2025 am 11:32 AM

Unlock the Power of Embedding Models: A Deep Dive into Andrew Ng's New Course Imagine a future where machines understand and respond to your questions with perfect accuracy. This isn't science fiction; thanks to advancements in AI, it's becoming a r

Is Hallucination in Large Language Models (LLMs) Inevitable?Is Hallucination in Large Language Models (LLMs) Inevitable?Apr 15, 2025 am 11:31 AM

Large Language Models (LLMs) and the Inevitable Problem of Hallucinations You've likely used AI models like ChatGPT, Claude, and Gemini. These are all examples of Large Language Models (LLMs), powerful AI systems trained on massive text datasets to

The 60% Problem — How AI Search Is Draining Your TrafficThe 60% Problem — How AI Search Is Draining Your TrafficApr 15, 2025 am 11:28 AM

Recent research has shown that AI Overviews can cause a whopping 15-64% decline in organic traffic, based on industry and search type. This radical change is causing marketers to reconsider their whole strategy regarding digital visibility. The New

MIT Media Lab To Put Human Flourishing At The Heart Of AI R&DMIT Media Lab To Put Human Flourishing At The Heart Of AI R&DApr 15, 2025 am 11:26 AM

A recent report from Elon University’s Imagining The Digital Future Center surveyed nearly 300 global technology experts. The resulting report, ‘Being Human in 2035’, concluded that most are concerned that the deepening adoption of AI systems over t

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: How To Unlock Everything In MyRise
1 months agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

DVWA

DVWA

Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

EditPlus Chinese cracked version

EditPlus Chinese cracked version

Small size, syntax highlighting, does not support code prompt function

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.