search
HomeBackend DevelopmentPython TutorialHow to use KNN algorithm for classification in Python?

How to use KNN algorithm for classification in Python?

Jun 05, 2023 am 09:02 AM
pythonClassificationknn algorithm

K nearest neighbor algorithm (KNN) is a simple and effective algorithm that can be used for classification and regression. Its basic idea is to identify the category to which a sample belongs by measuring the distance between different features. In this article, we will explore how to classify KNN in Python.

1. Prepare the data set

First, we need to prepare the data set. In this example, we will use the Iris dataset, which contains 3 different iris flowers (Setosa, Versicolour and Virginica), each with 4 features (Sepal Length, Sepal Width, Petal Length, Petal Width).

We will use the Pandas library to read and preprocess the data. First, we need to import the required libraries:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

Then, we will load the dataset:

url = "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data"
names = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'class']
dataset = pd.read_csv(url, names=names)

Now that we have a dataset, we can start exploring it.

2. Data Visualization

Before classifying, we need to visualize and explore the data. We will plot a scatterplot of each feature against another feature, as well as a histogram of each feature. We can use Matplotlib library and Seaborn library for visualization.

Scatter plot between features:

import seaborn as sns
sns.pairplot(dataset, hue="class")

How to use KNN algorithm for classification in Python?

As can be seen from this picture, the characteristics of different iris flowers are very different, which is the basis for classification.

Histogram of each feature:

dataset.hist()
plt.show()

How to use KNN algorithm for classification in Python?

As can be seen from this figure, each feature in the data set has a different distribution, which is the basis for normalization.

3. Data preprocessing

Before classification, we need to preprocess the data. We can split the dataset into input features and output categories, and then scale the feature values ​​to the range of 0 to 1.

First, we split the dataset into input features and output categories:

X = dataset.iloc[:, :-1].values
y = dataset.iloc[:, 4].values

Then, we scale the feature values ​​to the range of 0 to 1:

from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X = scaler.fit_transform(X)

Now, we have our preprocessed dataset.

4. Split the data set

Before classification, we need to split the data set into a training set and a test set. We can do this using the train_test_split function from the Scikit-learn library.

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)

This will create a training set and a test set with a ratio of 80:20.

5. Training the KNN model

Now, we can start training the KNN model. We first import the KNeighborsClassifier class, create an instance, and use the fit function to fit the model.

from sklearn.neighbors import KNeighborsClassifier
classifier = KNeighborsClassifier(n_neighbors=5)
classifier.fit(X_train, y_train)

This will create a KNN classifier and train it to classify using the training set.

6. Prediction

Now, we can use the KNN model to predict the test set. We use the predict function to make predictions and save the results into a variable.

y_pred = classifier.predict(X_test)

7. Model Evaluation

Finally, we need to evaluate our model and determine its accuracy. We can use the confusion_matrix and classification_report functions in the Scikit-learn library to evaluate the accuracy of the model.

from sklearn.metrics import confusion_matrix, classification_report
print(confusion_matrix(y_test, y_pred))
print(classification_report(y_test, y_pred))

This will output a confusion matrix and classification report showing the accuracy of our model.

Summary

Using the KNN algorithm for classification in Python requires the following steps:

1. Preparing the data set
2. Data visualization
3. Data Preprocessing
4.Split the data set
5.Train KNN model
6.Prediction
7.Model evaluation

The KNN algorithm is a simple and effective algorithm that can Used for classification and regression. Using the KNN algorithm for classification in Python requires following the above steps. At the same time, we also need to perform data visualization and preprocessing to ensure that our model can accurately classify.

The above is the detailed content of How to use KNN algorithm for classification in Python?. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
How do you append elements to a Python array?How do you append elements to a Python array?Apr 30, 2025 am 12:19 AM

InPython,youappendelementstoalistusingtheappend()method.1)Useappend()forsingleelements:my_list.append(4).2)Useextend()or =formultipleelements:my_list.extend(another_list)ormy_list =[4,5,6].3)Useinsert()forspecificpositions:my_list.insert(1,5).Beaware

How do you debug shebang-related issues?How do you debug shebang-related issues?Apr 30, 2025 am 12:17 AM

The methods to debug the shebang problem include: 1. Check the shebang line to make sure it is the first line of the script and there are no prefixed spaces; 2. Verify whether the interpreter path is correct; 3. Call the interpreter directly to run the script to isolate the shebang problem; 4. Use strace or trusts to track the system calls; 5. Check the impact of environment variables on shebang.

How do you remove elements from a Python array?How do you remove elements from a Python array?Apr 30, 2025 am 12:16 AM

Pythonlistscanbemanipulatedusingseveralmethodstoremoveelements:1)Theremove()methodremovesthefirstoccurrenceofaspecifiedvalue.2)Thepop()methodremovesandreturnsanelementatagivenindex.3)Thedelstatementcanremoveanitemorslicebyindex.4)Listcomprehensionscr

What data types can be stored in a Python list?What data types can be stored in a Python list?Apr 30, 2025 am 12:07 AM

Pythonlistscanstoreanydatatype,includingintegers,strings,floats,booleans,otherlists,anddictionaries.Thisversatilityallowsformixed-typelists,whichcanbemanagedeffectivelyusingtypechecks,typehints,andspecializedlibrarieslikenumpyforperformance.Documenti

What are some common operations that can be performed on Python lists?What are some common operations that can be performed on Python lists?Apr 30, 2025 am 12:01 AM

Pythonlistssupportnumerousoperations:1)Addingelementswithappend(),extend(),andinsert().2)Removingitemsusingremove(),pop(),andclear().3)Accessingandmodifyingwithindexingandslicing.4)Searchingandsortingwithindex(),sort(),andreverse().5)Advancedoperatio

How do you create multi-dimensional arrays using NumPy?How do you create multi-dimensional arrays using NumPy?Apr 29, 2025 am 12:27 AM

Create multi-dimensional arrays with NumPy can be achieved through the following steps: 1) Use the numpy.array() function to create an array, such as np.array([[1,2,3],[4,5,6]]) to create a 2D array; 2) Use np.zeros(), np.ones(), np.random.random() and other functions to create an array filled with specific values; 3) Understand the shape and size properties of the array to ensure that the length of the sub-array is consistent and avoid errors; 4) Use the np.reshape() function to change the shape of the array; 5) Pay attention to memory usage to ensure that the code is clear and efficient.

Explain the concept of 'broadcasting' in NumPy arrays.Explain the concept of 'broadcasting' in NumPy arrays.Apr 29, 2025 am 12:23 AM

BroadcastinginNumPyisamethodtoperformoperationsonarraysofdifferentshapesbyautomaticallyaligningthem.Itsimplifiescode,enhancesreadability,andboostsperformance.Here'showitworks:1)Smallerarraysarepaddedwithonestomatchdimensions.2)Compatibledimensionsare

Explain how to choose between lists, array.array, and NumPy arrays for data storage.Explain how to choose between lists, array.array, and NumPy arrays for data storage.Apr 29, 2025 am 12:20 AM

ForPythondatastorage,chooselistsforflexibilitywithmixeddatatypes,array.arrayformemory-efficienthomogeneousnumericaldata,andNumPyarraysforadvancednumericalcomputing.Listsareversatilebutlessefficientforlargenumericaldatasets;array.arrayoffersamiddlegro

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

MantisBT

MantisBT

Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

SublimeText3 English version

SublimeText3 English version

Recommended: Win version, supports code prompts!

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool

EditPlus Chinese cracked version

EditPlus Chinese cracked version

Small size, syntax highlighting, does not support code prompt function