First, build a test table
create table praise_record( id bigint primary key auto_increment, name varchar(10), praise_num int ) ENGINE=InnoDB;
Then let chatGpt generate several pieces of test data for us
INSERT INTO praise_record (name, praise_num) VALUES ('John', 5); INSERT INTO praise_record (name, praise_num) VALUES ('Jane', 3); INSERT INTO praise_record (name, praise_num) VALUES ('Bob', 10); INSERT INTO praise_record (name, praise_num) VALUES ('Alice', 3); INSERT INTO praise_record (name, praise_num) VALUES ('David', 7); INSERT INTO praise_record (name, praise_num) VALUES ('oct', 7);
Then we can start to realize our needs: return the list of likes, And return the ranking
rank()
Use the rank() function to return the list of likes, rank() over()
## 注意这里返回的rank字段要用反引号包起来 select name, praise_num, rank() over (order by praise_num desc) as `rank` from praise_record; +-------+------------+------+ | name | praise_num | rank | +-------+------------+------+ | Bob | 10 | 1 | | David | 7 | 2 | | oct | 7 | 2 | | John | 5 | 4 | | Jane | 3 | 5 | | Alice | 3 | 5 | +-------+------------+------+
When When using the rank() function, the same number of likes will get the same ranking, and the ranking may jump, so the final ranking will not be continuous
dense_rank()
Use the dense_rank() function to return the list of likes, dense_rank() over()
select name, praise_num, dense_rank() over (order by praise_num desc) as `rank` from praise_record; +-------+------------+------+ | name | praise_num | rank | +-------+------------+------+ | Bob | 10 | 1 | | David | 7 | 2 | | oct | 7 | 2 | | John | 5 | 3 | | Jane | 3 | 4 | | Alice | 3 | 4 | +-------+------------+------+
The same as the rank() function, the same number of likes will return the same ranking. But the final ranking returned by dense_rank() is a continuous ranking
row_number()
row_number() function returns the list of likes, row_number() over()
select name, praise_num, row_number() over (order by praise_num desc) as `rank` from praise_record; +-------+------------+------+ | name | praise_num | rank | +-------+------------+------+ | Bob | 10 | 1 | | David | 7 | 2 | | oct | 7 | 3 | | John | 5 | 4 | | Jane | 3 | 5 | | Alice | 3 | 6 | +-------+------------+------+
The row_number() function is suitable for use when the returned list only requires serial numbers
The above three functions are all newly added to MySQL8.0, so in older versions such as MySQL5.7 we You can simulate it and learn the implementation principles of these three window functions
Simulation implementation of rank() function
select p1.name, p1.praise_num, count(p2.praise_num) + 1 as `rank` from praise_record p1 left join praise_record p2 on p1.praise_num < p2.praise_num group by p1.name, p1.praise_num order by `rank`; +-------+------------+------+ | name | praise_num | rank | +-------+------------+------+ | Bob | 10 | 1 | | David | 7 | 2 | | oct | 7 | 2 | | John | 5 | 4 | | Jane | 3 | 5 | | Alice | 3 | 5 | +-------+------------+------+
We can use self-joining method to make each score lower than the current Record count of row scores, and finally add 1 to the count value as the ranking of the current row to simulate the simulation implementation of rank()
dense_rank()
select p1.name, p1.praise_num, count(distinct p2.praise_num) + 1 as `dense_rank` from praise_record p1 left join praise_record p2 on p1.praise_num < p2.praise_num group by p1.name, p1.praise_num order by `dense_rank`; +-------+------------+------------+ | name | praise_num | dense_rank | +-------+------------+------------+ | Bob | 10 | 1 | | oct | 7 | 2 | | David | 7 | 2 | | John | 5 | 3 | | Jane | 3 | 4 | | Alice | 3 | 4 | +-------+------------+------------+
The implementation of dense_rank is similar to rank. The only difference is that distinct is added to deduplicate the number of likes, so that the rankings returned for different numbers of likes are continuous
Simulation implementation of row_number
##使用自定义变量得先初始化 set @rowNum = 0; select name, praise_num, @rowNum := @rowNum +1 as `row_number` from praise_record order by praise_num desc ; +-------+------------+------------+ | name | praise_num | row_number | +-------+------------+------------+ | Bob | 10 | 1 | | David | 7 | 2 | | oct | 7 | 3 | | John | 5 | 4 | | Jane | 3 | 5 | | Alice | 3 | 6 | +-------+------------+------------+
We can use A rowNum variable is used to record the row number. The data rowNUm of each row is 1, so that we can get the sequence number we want
The above is the detailed content of How to use MySQL window functions to achieve list ranking. For more information, please follow other related articles on the PHP Chinese website!

本篇文章给大家带来了关于mysql的相关知识,其中主要介绍了关于架构原理的相关内容,MySQL Server架构自顶向下大致可以分网络连接层、服务层、存储引擎层和系统文件层,下面一起来看一下,希望对大家有帮助。

方法:1、利用right函数,语法为“update 表名 set 指定字段 = right(指定字段, length(指定字段)-1)...”;2、利用substring函数,语法为“select substring(指定字段,2)..”。

mysql的msi与zip版本的区别:1、zip包含的安装程序是一种主动安装,而msi包含的是被installer所用的安装文件以提交请求的方式安装;2、zip是一种数据压缩和文档存储的文件格式,msi是微软格式的安装包。

在mysql中,可以利用char()和REPLACE()函数来替换换行符;REPLACE()函数可以用新字符串替换列中的换行符,而换行符可使用“char(13)”来表示,语法为“replace(字段名,char(13),'新字符串') ”。

转换方法:1、利用cast函数,语法“select * from 表名 order by cast(字段名 as SIGNED)”;2、利用“select * from 表名 order by CONVERT(字段名,SIGNED)”语句。

本篇文章给大家带来了关于mysql的相关知识,其中主要介绍了关于MySQL复制技术的相关问题,包括了异步复制、半同步复制等等内容,下面一起来看一下,希望对大家有帮助。

在mysql中,可以利用REGEXP运算符判断数据是否是数字类型,语法为“String REGEXP '[^0-9.]'”;该运算符是正则表达式的缩写,若数据字符中含有数字时,返回的结果是true,反之返回的结果是false。

本篇文章给大家带来了关于mysql的相关知识,其中主要介绍了mysql高级篇的一些问题,包括了索引是什么、索引底层实现等等问题,下面一起来看一下,希望对大家有帮助。


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Atom editor mac version download
The most popular open source editor

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

Dreamweaver Mac version
Visual web development tools

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.
