First, build a test table
create table praise_record( id bigint primary key auto_increment, name varchar(10), praise_num int ) ENGINE=InnoDB;
Then let chatGpt generate several pieces of test data for us
INSERT INTO praise_record (name, praise_num) VALUES ('John', 5); INSERT INTO praise_record (name, praise_num) VALUES ('Jane', 3); INSERT INTO praise_record (name, praise_num) VALUES ('Bob', 10); INSERT INTO praise_record (name, praise_num) VALUES ('Alice', 3); INSERT INTO praise_record (name, praise_num) VALUES ('David', 7); INSERT INTO praise_record (name, praise_num) VALUES ('oct', 7);
Then we can start to realize our needs: return the list of likes, And return the ranking
rank()
Use the rank() function to return the list of likes, rank() over()
## 注意这里返回的rank字段要用反引号包起来 select name, praise_num, rank() over (order by praise_num desc) as `rank` from praise_record; +-------+------------+------+ | name | praise_num | rank | +-------+------------+------+ | Bob | 10 | 1 | | David | 7 | 2 | | oct | 7 | 2 | | John | 5 | 4 | | Jane | 3 | 5 | | Alice | 3 | 5 | +-------+------------+------+
When When using the rank() function, the same number of likes will get the same ranking, and the ranking may jump, so the final ranking will not be continuous
dense_rank()
Use the dense_rank() function to return the list of likes, dense_rank() over()
select name, praise_num, dense_rank() over (order by praise_num desc) as `rank` from praise_record; +-------+------------+------+ | name | praise_num | rank | +-------+------------+------+ | Bob | 10 | 1 | | David | 7 | 2 | | oct | 7 | 2 | | John | 5 | 3 | | Jane | 3 | 4 | | Alice | 3 | 4 | +-------+------------+------+
The same as the rank() function, the same number of likes will return the same ranking. But the final ranking returned by dense_rank() is a continuous ranking
row_number()
row_number() function returns the list of likes, row_number() over()
select name, praise_num, row_number() over (order by praise_num desc) as `rank` from praise_record; +-------+------------+------+ | name | praise_num | rank | +-------+------------+------+ | Bob | 10 | 1 | | David | 7 | 2 | | oct | 7 | 3 | | John | 5 | 4 | | Jane | 3 | 5 | | Alice | 3 | 6 | +-------+------------+------+
The row_number() function is suitable for use when the returned list only requires serial numbers
The above three functions are all newly added to MySQL8.0, so in older versions such as MySQL5.7 we You can simulate it and learn the implementation principles of these three window functions
Simulation implementation of rank() function
select p1.name, p1.praise_num, count(p2.praise_num) + 1 as `rank` from praise_record p1 left join praise_record p2 on p1.praise_num < p2.praise_num group by p1.name, p1.praise_num order by `rank`; +-------+------------+------+ | name | praise_num | rank | +-------+------------+------+ | Bob | 10 | 1 | | David | 7 | 2 | | oct | 7 | 2 | | John | 5 | 4 | | Jane | 3 | 5 | | Alice | 3 | 5 | +-------+------------+------+
We can use self-joining method to make each score lower than the current Record count of row scores, and finally add 1 to the count value as the ranking of the current row to simulate the simulation implementation of rank()
dense_rank()
select p1.name, p1.praise_num, count(distinct p2.praise_num) + 1 as `dense_rank` from praise_record p1 left join praise_record p2 on p1.praise_num < p2.praise_num group by p1.name, p1.praise_num order by `dense_rank`; +-------+------------+------------+ | name | praise_num | dense_rank | +-------+------------+------------+ | Bob | 10 | 1 | | oct | 7 | 2 | | David | 7 | 2 | | John | 5 | 3 | | Jane | 3 | 4 | | Alice | 3 | 4 | +-------+------------+------------+
The implementation of dense_rank is similar to rank. The only difference is that distinct is added to deduplicate the number of likes, so that the rankings returned for different numbers of likes are continuous
Simulation implementation of row_number
##使用自定义变量得先初始化 set @rowNum = 0; select name, praise_num, @rowNum := @rowNum +1 as `row_number` from praise_record order by praise_num desc ; +-------+------------+------------+ | name | praise_num | row_number | +-------+------------+------------+ | Bob | 10 | 1 | | David | 7 | 2 | | oct | 7 | 3 | | John | 5 | 4 | | Jane | 3 | 5 | | Alice | 3 | 6 | +-------+------------+------------+
We can use A rowNum variable is used to record the row number. The data rowNUm of each row is 1, so that we can get the sequence number we want
The above is the detailed content of How to use MySQL window functions to achieve list ranking. For more information, please follow other related articles on the PHP Chinese website!

MySQLstringtypesimpactstorageandperformanceasfollows:1)CHARisfixed-length,alwaysusingthesamestoragespace,whichcanbefasterbutlessspace-efficient.2)VARCHARisvariable-length,morespace-efficientbutpotentiallyslower.3)TEXTisforlargetext,storedoutsiderows,

MySQLstringtypesincludeVARCHAR,TEXT,CHAR,ENUM,andSET.1)VARCHARisversatileforvariable-lengthstringsuptoaspecifiedlimit.2)TEXTisidealforlargetextstoragewithoutadefinedlength.3)CHARisfixed-length,suitableforconsistentdatalikecodes.4)ENUMenforcesdatainte

MySQLoffersvariousstringdatatypes:1)CHARforfixed-lengthstrings,2)VARCHARforvariable-lengthtext,3)BINARYandVARBINARYforbinarydata,4)BLOBandTEXTforlargedata,and5)ENUMandSETforcontrolledinput.Eachtypehasspecificusesandperformancecharacteristics,sochoose

TograntpermissionstonewMySQLusers,followthesesteps:1)AccessMySQLasauserwithsufficientprivileges,2)CreateanewuserwiththeCREATEUSERcommand,3)UsetheGRANTcommandtospecifypermissionslikeSELECT,INSERT,UPDATE,orALLPRIVILEGESonspecificdatabasesortables,and4)

ToaddusersinMySQLeffectivelyandsecurely,followthesesteps:1)UsetheCREATEUSERstatementtoaddanewuser,specifyingthehostandastrongpassword.2)GrantnecessaryprivilegesusingtheGRANTstatement,adheringtotheprincipleofleastprivilege.3)Implementsecuritymeasuresl

ToaddanewuserwithcomplexpermissionsinMySQL,followthesesteps:1)CreatetheuserwithCREATEUSER'newuser'@'localhost'IDENTIFIEDBY'password';.2)Grantreadaccesstoalltablesin'mydatabase'withGRANTSELECTONmydatabase.TO'newuser'@'localhost';.3)Grantwriteaccessto'

The string data types in MySQL include CHAR, VARCHAR, BINARY, VARBINARY, BLOB, and TEXT. The collations determine the comparison and sorting of strings. 1.CHAR is suitable for fixed-length strings, VARCHAR is suitable for variable-length strings. 2.BINARY and VARBINARY are used for binary data, and BLOB and TEXT are used for large object data. 3. Sorting rules such as utf8mb4_unicode_ci ignores upper and lower case and is suitable for user names; utf8mb4_bin is case sensitive and is suitable for fields that require precise comparison.

The best MySQLVARCHAR column length selection should be based on data analysis, consider future growth, evaluate performance impacts, and character set requirements. 1) Analyze the data to determine typical lengths; 2) Reserve future expansion space; 3) Pay attention to the impact of large lengths on performance; 4) Consider the impact of character sets on storage. Through these steps, the efficiency and scalability of the database can be optimized.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

WebStorm Mac version
Useful JavaScript development tools

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

SublimeText3 Linux new version
SublimeText3 Linux latest version

Zend Studio 13.0.1
Powerful PHP integrated development environment
