Home  >  Article  >  Backend Development  >  Drawing dynamic visualization charts with Python is so cool!

Drawing dynamic visualization charts with Python is so cool!

WBOY
WBOYforward
2023-05-24 12:01:062359browse

用 Python 绘制动态可视化图表,太酷了!

Storytelling is a crucial skill for data scientists. In order to express our ideas and persuade others, we need to communicate effectively. And beautiful visualizations are a great tool for this task.

This article will introduce 5 non-traditional visualization techniques that can make your data stories more beautiful and effective. Python's Plotly graphics library will be used here, allowing you to effortlessly generate animated charts and interactive charts.

Install the module

If you haven’t installed Plotly yet, just run the following command in your terminal to complete the installation:

pip install plotly

Visual dynamic graph

When studying the evolution of this or that indicator, we often involve time data. The Plotly animation tool only requires one line of code to allow people to watch the changes in data over time, as shown in the figure below:

用 Python 绘制动态可视化图表,太酷了!

The code is as follows:

import plotly.express as px
from vega_datasets import data
df = data.disasters()
df = df[df.Year > 1990]
fig = px.bar(df,
 y="Entity",
 x="Deaths",
 animation_frame="Year",
 orientation='h',
 range_x=[0, df.Deaths.max()],
 color="Entity")
# improve aesthetics (size, grids etc.)
fig.update_layout(width=1000,
height=800,
xaxis_showgrid=False,
yaxis_showgrid=False,
paper_bgcolor='rgba(0,0,0,0)',
plot_bgcolor='rgba(0,0,0,0)',
title_text='Evolution of Natural Disasters',
showlegend=False)
fig.update_xaxes(title_text='Number of Deaths')
fig.update_yaxes(title_text='')
fig.show()

As long as You have a time variable to filter on, then almost any chart can be animated. The following is an example of making a scatter chart animation:

用 Python 绘制动态可视化图表,太酷了!

import plotly.express as px
df = px.data.gapminder()
fig = px.scatter(
df,
x="gdpPercap",
y="lifeExp",
animation_frame="year",
size="pop",
color="continent",
hover_name="country",
log_x=True,
size_max=55,
range_x=[100, 100000],
range_y=[25, 90],
# color_continuous_scale=px.colors.sequential.Emrld
)
fig.update_layout(width=1000,
height=800,
xaxis_showgrid=False,
yaxis_showgrid=False,
paper_bgcolor='rgba(0,0,0,0)',
plot_bgcolor='rgba(0,0,0,0)')

Sunburst chart

The sunburst chart is a good way to visualize the group by statement. method. If you want to break down a given quantity by one or more categorical variables, use a sun chart.

Suppose we want to break down the average tip data according to gender and time of day. This double group by statement can be displayed more effectively through visualization compared to a table.

用 Python 绘制动态可视化图表,太酷了!

This chart is interactive, allowing you to click and explore the categories on your own. You just need to define all your categories, declare the hierarchy between them (see the parents parameter in the code below) and assign the corresponding values, which in our case is the output of the group by statement.

import plotly.graph_objects as go
import plotly.express as px
import numpy as np
import pandas as pd
df = px.data.tips()
fig = go.Figure(go.Sunburst(
labels=["Female", "Male", "Dinner", "Lunch", 'Dinner ', 'Lunch '],
parents=["", "", "Female", "Female", 'Male', 'Male'],
values=np.append(
df.groupby('sex').tip.mean().values,
df.groupby(['sex', 'time']).tip.mean().values),
marker=dict(colors=px.colors.sequential.Emrld)),
layout=go.Layout(paper_bgcolor='rgba(0,0,0,0)',
 plot_bgcolor='rgba(0,0,0,0)'))
fig.update_layout(margin=dict(t=0, l=0, r=0, b=0),
title_text='Tipping Habbits Per Gender, Time and Day')
fig.show()

Now we add one more layer to this hierarchy:

用 Python 绘制动态可视化图表,太酷了!

To do this, we add another group by statement involving three categorical variables value.

import plotly.graph_objects as go
import plotly.express as px
import pandas as pd
import numpy as np
df = px.data.tips()
fig = go.Figure(go.Sunburst(labels=[
"Female", "Male", "Dinner", "Lunch", 'Dinner ', 'Lunch ', 'Fri', 'Sat',
'Sun', 'Thu', 'Fri ', 'Thu ', 'Fri', 'Sat', 'Sun', 'Fri ', 'Thu '
],
parents=[
"", "", "Female", "Female", 'Male', 'Male',
'Dinner', 'Dinner', 'Dinner', 'Dinner',
'Lunch', 'Lunch', 'Dinner ', 'Dinner ',
'Dinner ', 'Lunch ', 'Lunch '
],
values=np.append(
np.append(
df.groupby('sex').tip.mean().values,
df.groupby(['sex',
'time']).tip.mean().values,
),
df.groupby(['sex', 'time',
'day']).tip.mean().values),
marker=dict(colors=px.colors.sequential.Emrld)),
layout=go.Layout(paper_bgcolor='rgba(0,0,0,0)',
 plot_bgcolor='rgba(0,0,0,0)'))
fig.update_layout(margin=dict(t=0, l=0, r=0, b=0),
title_text='Tipping Habbits Per Gender, Time and Day')

fig.show()

Pointer diagram

The pointer diagram is just for looks. Use this type of chart when reporting on success metrics like KPIs and showing how close they are to your goals.

用 Python 绘制动态可视化图表,太酷了!

import plotly.graph_objects as go
fig = go.Figure(go.Indicator(
domain = {'x': [0, 1], 'y': [0, 1]},
value = 4.3,
mode = "gauge+number+delta",
title = {'text': "Success Metric"},
delta = {'reference': 3.9},
gauge = {'bar': {'color': "lightgreen"},
'axis': {'range': [None, 5]},
 'steps' : [
 {'range': [0, 2.5], 'color': "lightgray"},
 {'range': [2.5, 4], 'color': "gray"}],
}))
fig.show()

Sankey Plot

Another way to explore the relationship between categorical variables is a parallel coordinate plot like the following. You can drag, drop, highlight and browse values ​​at any time, perfect for presentations.

用 Python 绘制动态可视化图表,太酷了!

The code is as follows:

import plotly.express as px
from vega_datasets import data
import pandas as pd
df = data.movies()
df = df.dropna()
df['Genre_id'] = df.Major_Genre.factorize()[0]
fig = px.parallel_categories(
df,
dimensions=['MPAA_Rating', 'Creative_Type', 'Major_Genre'],
color="Genre_id",
color_continuous_scale=px.colors.sequential.Emrld,
)
fig.show()

Parallel coordinate chart

The parallel coordinate chart is a derivative of the chart above. Here, each string represents a single observation. This is a method that can be used to identify outliers (single lines that are far away from the rest of the data), clusters, trends, and redundant variables (for example, if two variables have similar values ​​at every observation, they will lie on the same horizontal line , a useful tool to indicate the presence of redundancy).

用 Python 绘制动态可视化图表,太酷了!

The code is as follows:

import plotly.express as px
from vega_datasets import data
import pandas as pd
df = data.movies()
df = df.dropna()
df['Genre_id'] = df.Major_Genre.factorize()[0]
fig = px.parallel_coordinates(
df,
dimensions=[
'IMDB_Rating', 'IMDB_Votes', 'Production_Budget', 'Running_Time_min',
'US_Gross', 'Worldwide_Gross', 'US_DVD_Sales'
],
color='IMDB_Rating',
color_continuous_scale=px.colors.sequential.Emrld)
fig.show()

The above is the detailed content of Drawing dynamic visualization charts with Python is so cool!. For more information, please follow other related articles on the PHP Chinese website!

Statement:
This article is reproduced at:51cto.com. If there is any infringement, please contact admin@php.cn delete