Home >Java >javaTutorial >How to use springboot+chatgpt+chatUI Pro to develop intelligent chat tools
ChatGPT-Java is an OpenAI Java SDK that supports out-of-the-box use. Currently, it supports all APIs on the official website. We favor using the latest versions of GPT-3.5-Turbo and whisper-1 models.
2. Spring Boot is a new framework provided by the Pivotal team. It is designed to simplify the initial construction and development process of new Spring applications. This framework adopts a specific configuration method and does not require developers to define general configurations. In this way, Spring Boot strives to become a leader in the booming field of rapid application development.
3.ChatUI Pro is an out-of-the-box framework that can quickly build an intelligent conversational robot based on the basic components of ChatUI and combined with the best practices of Alibaba and Xiaomi. It is simple and easy to use, and you can build a conversation robot through simple configuration; at the same time, it is powerful and easy to expand, and can meet various customized needs through rich interfaces and custom cards.
This project uses the GPT-3.5-Turb model as the basis, and implements a simple artificial intelligence robot through springboot combined with redis, chat-java and chatUI Pro. Because accessing openAI's API returns results slowly, after the front-end in the project sends the problem request to the back-end, the back-end will generate a UUID and return it to the front-end. At the same time, the back-end will also reopen a thread to access openAI. When openAI returns After the result, the backend uses the UUID as the key, and the result returned by openAI is stored in redis as the value. The front-end will request the back-end answer interface every 5 seconds based on the UUID in the result of the first request from the back-end. The answer interface will query whether redis has a value based on the UUID. Until the back-end answer interface returns the result, the front-end will output the result to User
1. Create a springboot project and name the project mychatgpt.
2. Import the dependencies of the project pom
<?xml version="1.0" encoding="UTF-8"?> <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd"> <modelVersion>4.0.0</modelVersion> <parent> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-parent</artifactId> <version>2.5.12</version> <relativePath/> <!-- lookup parent from repository --> </parent> <groupId>com.xyh</groupId> <artifactId>mychatgpt</artifactId> <version>0.0.1-SNAPSHOT</version> <name>mychatgpt</name> <description>Demo project for Spring Boot</description> <properties> <java.version>8</java.version> </properties> <dependencies> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-data-redis</artifactId> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-web</artifactId> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-aop</artifactId> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-test</artifactId> <exclusions> <exclusion> <groupId>org.apache.logging.log4j</groupId> <artifactId>log4j-api</artifactId> </exclusion> <exclusion> <groupId>org.apache.logging.log4j</groupId> <artifactId>log4j-to-slf4j</artifactId> </exclusion> </exclusions> <scope>test</scope> </dependency> <dependency> <groupId>org.projectlombok</groupId> <artifactId>lombok</artifactId> <optional>true</optional> </dependency> <dependency> <groupId>org.apache.httpcomponents</groupId> <artifactId>httpcore</artifactId> </dependency> <dependency> <groupId>com.theokanning.openai-gpt3-java</groupId> <artifactId>api</artifactId> <version>0.10.0</version> </dependency> <dependency> <groupId>com.theokanning.openai-gpt3-java</groupId> <artifactId>service</artifactId> <version>0.10.0</version> </dependency> <dependency> <groupId>com.theokanning.openai-gpt3-java</groupId> <artifactId>client</artifactId> <version>0.10.0</version> </dependency> <dependency> <groupId>cn.hutool</groupId> <artifactId>hutool-all</artifactId> <version>5.8.12</version> </dependency> <dependency> <groupId>com.unfbx</groupId> <artifactId>chatgpt-java</artifactId> <version>1.0.5</version> </dependency> <dependency> <groupId>mysql</groupId> <artifactId>mysql-connector-java</artifactId> <version>8.0.17</version> </dependency> <dependency> <groupId>com.alibaba</groupId> <artifactId>druid-spring-boot-starter</artifactId> <version>1.2.8</version> </dependency> <dependency> <groupId>com.baomidou</groupId> <artifactId>mybatis-plus-boot-starter</artifactId> <version>3.5.2</version> <exclusions> <exclusion> <groupId>com.baomidou</groupId> <artifactId>mybatis-plus-generator</artifactId> </exclusion> </exclusions> </dependency> <dependency> <groupId>com.github.yulichang</groupId> <artifactId>mybatis-plus-join</artifactId> <version>1.4.2</version> </dependency> <!--集成随机生成数据包 --> <dependency> <groupId>com.apifan.common</groupId> <artifactId>common-random</artifactId> <version>1.0.19</version> </dependency> <!--集成随机生成数据包 --> <dependency> <groupId>junit</groupId> <artifactId>junit</artifactId> <scope>test</scope> </dependency> </dependencies> <build> <plugins> <plugin> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-maven-plugin</artifactId> <configuration> <excludes> <exclude> <groupId>org.projectlombok</groupId> <artifactId>lombok</artifactId> </exclude> </excludes> </configuration> </plugin> </plugins> </build> </project>
3. Write the chatGPT implementation tool class
package com.xyh.mychatgpt.utils; import com.unfbx.chatgpt.OpenAiClient; import com.unfbx.chatgpt.entity.chat.ChatChoice; import com.unfbx.chatgpt.entity.chat.ChatCompletion; import com.unfbx.chatgpt.entity.chat.Message; import com.unfbx.chatgpt.entity.common.Choice; import com.unfbx.chatgpt.entity.completions.Completion; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.beans.factory.annotation.Value; import org.springframework.stereotype.Component; import java.util.Arrays; import java.util.List; /** * @author xiangyuanhong * @description: TODO * @date 2023/3/21上午9:28 */ @Component public class ChatGPTUtils { @Value("${xyh.openai.key}") private String token; @Autowired private RedisUtils redisUtils; public void ask(String model,String question,String uuid){ StringBuffer result=new StringBuffer(); try { OpenAiClient openAiClient = new OpenAiClient(token, 3000, 300, 300, null); if("GPT-3.5-Turb".equals(model)){ // GPT-3.5-Turb模型 Message message=Message.builder().role(Message.Role.USER).content(question).build(); ChatCompletion chatCompletion = ChatCompletion.builder().messages(Arrays.asList(message)).build(); List<ChatChoice> resultList = openAiClient.chatCompletion(chatCompletion).getChoices(); for (int i = 0; i < resultList.size(); i++) { result.append(resultList.get(i).getMessage().getContent()); } }else{ //text-davinci-003/text-ada-003 Completion completion = Completion.builder() .prompt(question) .model(model) .maxTokens(2000) .temperature(0) .echo(false) .build(); Choice[] resultList = openAiClient.completions(completion).getChoices(); for (Choice choice : resultList) { result.append(choice.getText()); } } }catch (Exception e) { System.out.println(e.getMessage()); result.append("小爱还不太懂,回去一定努力学习补充知识"); } redisUtils.set(uuid,result.toString()); } }
4. Develop the project Controller class, Used to interact with the front end
package com.xyh.mychatgpt.controller; import cn.hutool.core.thread.ThreadUtil; import cn.hutool.core.util.IdUtil; import cn.hutool.core.util.StrUtil; import com.xyh.mychatgpt.utils.ChatGPTUtils; import com.xyh.mychatgpt.utils.R; import com.xyh.mychatgpt.utils.RedisUtils; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.web.bind.annotation.GetMapping; import org.springframework.web.bind.annotation.RestController; import javax.servlet.http.HttpServletRequest; /** * @author xiangyuanhong * @description: TODO * @date 2023/2/28下午4:57 */ @RestController public class IndexController { @Autowired private RedisUtils redisUtils; @Autowired private ChatGPTUtils chatGPTUtils; @GetMapping("/ask") public R ask(String question,HttpServletRequest request) { String uuid=IdUtil.simpleUUID(); if (StrUtil.isBlank(question)) { question = "今天天气怎么样?"; } String finalQuestion = question; ThreadUtil.execAsync(()->{ chatGPTUtils.ask("GPT-3.5-Turb", finalQuestion,uuid); }); return R.ok().put("data",uuid); } @GetMapping("/answer") public R answer(String uuid){ String result=redisUtils.get(uuid); return R.ok().put("data",result); } }
5. Front-end page development, create the index.html page in the project templates directory, and introduce chatUI pro related files
<!DOCTYPE html> <html lang="zh-CN"> <head> <meta name="renderer" content="webkit" /> <meta name="force-rendering" content="webkit" /> <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1" /> <meta charset="UTF-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=0, minimum-scale=1.0, maximum-scale=1.0, viewport-fit=cover" /> <title>滴答小爱</title> <link rel="stylesheet" href="//g.alicdn.com/chatui/sdk-v2/0.2.4/sdk.css" rel="external nofollow" > </head> <body> <div id="root"></div> <script src="//g.alicdn.com/chatui/sdk-v2/0.2.4/sdk.js"></script> <script src="//g.alicdn.com/chatui/extensions/0.0.7/isv-parser.js"></script> <script src="js/setup.js"></script> <script src="js/jquery-3.6.3.min.js"></script> <script src="//g.alicdn.com/chatui/icons/0.3.0/index.js" async></script> </body> </html>
6. Create setup.js to implement chatUI Pro communicates with the backend.
var bot = new ChatSDK({ config: { // navbar: { // title: '滴答小爱' // }, robot: { avatar: 'images/chat.png' }, // 用户头像 user: { avatar: 'images/user.png', }, // 首屏消息 messages: [ { type: 'text', content: { text: '您好,小爱为您服务,请问有什么可以帮您的?' } } ], // 快捷短语 // quickReplies: [ // { name: '健康码颜色',isHighlight:true }, // { name: '入浙通行申报' }, // { name: '健康码是否可截图使用' }, // { name: '健康通行码适用范围' }, // ], // 输入框占位符 placeholder: '输入任何您想询问的问题', }, requests: { send: function (msg) { if (msg.type === 'text') { return { url: '/ask', data: { question: msg.content.text } }; } } }, handlers: { /** * * 解析请求返回的数据 * @param {object} res - 请求返回的数据 * @param {object} requestType - 请求类型 * @return {array} */ parseResponse: function (res, requestType) { // 根据 requestType 处理数据 if (requestType === 'send' && res.code==0) { // 用 isv 消息解析器处理数据 $.ajaxSettings.async=false; var answer=""; var isOK=false; while(!isOK){ $.get("/answer",{uuid:res.data},function(result){ console.log(result.data) if(null != result.data){ isOK=true; answer=result.data; } },"json"); if(!isOK){ sleep(5000); } } $.ajaxSettings.async=true; return [{"_id":res.data,type:"text",content:{text:answer},position:"left"}]; } }, }, }); function sleep(n) { //n表示的毫秒数 var start = new Date().getTime(); while (true) { if (new Date().getTime() - start > n) { break; } } } bot.run();
Once the project is completed, start the Spring Boot project and access http://ip:port. The final effect of the project: http://hyrun.vip/
The above is the detailed content of How to use springboot+chatgpt+chatUI Pro to develop intelligent chat tools. For more information, please follow other related articles on the PHP Chinese website!