TinyDB is a lightweight database written in pure Python, with only 1,800 lines of code in total and no external dependencies.
The goal of TinyDB is to reduce the difficulty of using databases for small Python applications. For some simple programs, instead of using SQL databases, it is better to use TinyDB because it has the following characteristics:
- Lightweight: The current source code has 1800 lines of code (about 40% of the documentation) and 1600 lines of test code.
- Can be migrated at will: The database file is generated in the current folder, does not require any service, and can be migrated at will.
- Simplicity: TinyDB makes it easy for users to use by providing a simple and clean API.
- Written in pure Python: TinyDB requires neither an external server nor any dependencies from PyPI.
- Works with Python 3.6 and PyPy3: TinyDB works with all modern versions of Python and PyPy.
- Powerful scalability: You can easily extend TinyDB by writing middleware to modify the behavior of the storage.
- 100% Test Coverage: No explanation required.
1. Preparation
Before you start, you must ensure that Python and pip have been successfully installed on your computer.
Please choose any of the following methods to enter the command to install dependencies:
1. Windows environment open Cmd (Start-Run-CMD).
2. MacOS environment Open Terminal (command space and enter Terminal).
3. If you are using VSCode editor or Pycharm, you can directly use the Terminal at the bottom of the interface.
pip install tinydb
2. Simple addition, deletion, modification and query example
Initialize one DB file:
from tinydb import TinyDB db = TinyDB('db.json')
This generates a database file named `db.json` in the current folder.
Insert data into it:
from tinydb import TinyDB db = TinyDB('db.json') db.insert({'type': 'apple', 'count': 7}) db.insert({'type': 'peach', 'count': 3})
As you can see, we can directly insert dictionary data into the database without any processing. The following is the method of batch insertion:
db.insert_multiple([ {'name': 'John', 'age': 22}, {'name': 'John', 'age': 37}]) db.insert_multiple({'int': 1, 'value': i} for i in range(2))
Query all data:
from tinydb import TinyDB db = TinyDB('db.json') db.all() # [{'count': 7, 'type': 'apple'}, {'count': 3, 'type': 'peach'}]
In addition to .all(), we can also use a for loop to traverse the db:
from tinydb import TinyDB db = TinyDB('db.json') for item in db: print(item) # {'count': 7, 'type': 'apple'} # {'count': 3, 'type': 'peach'}
If you need to search For specific data, you can use Query():
from tinydb import TinyDB db = TinyDB('db.json') Fruit = Query() db.search(Fruit.type == 'peach') # [{'count': 3, 'type': 'peach'}] db.search(Fruit.count > 5) # [{'count': 7, 'type': 'apple'}]
Update data:
from tinydb import TinyDB db = TinyDB('db.json') db.update({'foo': 'bar'}) # 删除某个Key from tinydb.operations import delete db.update(delete('key1'), User.name == 'John')
Delete data:
You can also use similar conditional statements to delete data:
from tinydb import TinyDB db = TinyDB('db.json') db.remove(Fruit.count < 5) db.all() # [{'count': 10, 'type': 'apple'}]
Clear the entire database:
from tinydb import TinyDB db = TinyDB('db.json') db.truncate() db.all() # []
3. Advanced query
In addition to the dot operator to access data, you can also use the native dict access representation:
# 写法1 db.search(User.country-code == 'foo') # 写法2 db.search(User['country-code'] == 'foo')
These two The two ways of writing are equivalent.
In addition to the common query operators (==, , ...), TinyDB also supports the where statement:
from tinydb import where db.search(where('field') == 'value')
This is equivalent to:
db.search(Query()['field'] == 'value')
This syntax can also access nested fields:
db.search(where('birthday').year == 1900) # 或者 db.search(where('birthday')['year'] == 1900)
Any query method:
db.search(Group.permissions.any(Permission.type == 'read')) # [{'name': 'user', 'permissions': [{'type': 'read'}]}, # {'name': 'sudo', 'permissions': [{'type': 'read'}, {'type': 'sudo'}]}, # {'name': 'admin', 'permissions': # [{'type': 'read'}, {'type': 'write'}, {'type': 'sudo'}]}]
Check whether a single item is included in the list:
db.search(User.name.one_of(['jane', 'john']))
TinyDB also supports and Pandas-like logical operations:
# Negate a query: db.search(~ (User.name == 'John')) # Logical AND: db.search((User.name == 'John') & (User.age <= 30)) # Logical OR: db.search((User.name == 'John') | (User.name == 'Bob'))
The introduction to TinyDB ends here. You can also visit their official documentation to see more usage methods:
https:/ /www.php.cn/link/8ff3fdef6f5144f50eb2a83cd34baa5d
Especially for students who want to do some storage optimization based on TinyDB, you can read the Storage & Middleware chapter in detail.
The above is the detailed content of TinyDB is a lightweight database written purely in Python.. For more information, please follow other related articles on the PHP Chinese website!

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于Seaborn的相关问题,包括了数据可视化处理的散点图、折线图、条形图等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于进程池与进程锁的相关问题,包括进程池的创建模块,进程池函数等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于简历筛选的相关问题,包括了定义 ReadDoc 类用以读取 word 文件以及定义 search_word 函数用以筛选的相关内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于数据类型之字符串、数字的相关问题,下面一起来看一下,希望对大家有帮助。

VS Code的确是一款非常热门、有强大用户基础的一款开发工具。本文给大家介绍一下10款高效、好用的插件,能够让原本单薄的VS Code如虎添翼,开发效率顿时提升到一个新的阶段。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于numpy模块的相关问题,Numpy是Numerical Python extensions的缩写,字面意思是Python数值计算扩展,下面一起来看一下,希望对大家有帮助。

pythn的中文意思是巨蟒、蟒蛇。1989年圣诞节期间,Guido van Rossum在家闲的没事干,为了跟朋友庆祝圣诞节,决定发明一种全新的脚本语言。他很喜欢一个肥皂剧叫Monty Python,所以便把这门语言叫做python。


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

SublimeText3 Linux new version
SublimeText3 Linux latest version

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

WebStorm Mac version
Useful JavaScript development tools

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft
