


This article explores how to implement a cross-domain recommendation model under the framework of continuous learning in the industry, and proposes a new cross-domain recommendation paradigm of continuous transfer learning, using the intermediate layer representation results of the continuously pre-trained source domain model as Based on the additional knowledge of the target domain model, a lightweight Adapter module was designed to realize the migration of cross-domain knowledge, and achieved significant business results in the ranking of recommended products.
Background
In recent years, with the application of deep models, the recommendation effect of recommendation systems in the industry has been significantly improved. With the continuous optimization of models, only It becomes more difficult to optimize model structure and features relying on in-scenario data. On large-scale e-commerce platforms like Taobao, in order to meet the diverse needs of different users, there are a series of recommendation scenarios of different sizes, such as information flow recommendation (you may like it on the home page), good products, post-purchase recommendations, and gathering These scenarios share the Taobao product system, but there are significant differences in specific product selection pools, core users, and business goals, and the scale of different scenarios varies greatly. Our scenario of "Good Goods" is a shopping guide scenario for Taobao's selected products. Compared with information flow recommendation, main search and other scenarios, the scale is relatively small. Therefore, how to use transfer learning, cross-domain recommendation and other methods to improve the model effect has always been It is one of the key points in optimizing the good goods sorting model. Although products and users in Taobao’s different business scenarios overlap, due to the significant differences in scenarios, the ranking model for large scenarios such as information flow recommendations does not work well when directly applied to scenarios where good products are available. Therefore, the team has made considerable attempts in the direction of cross-domain recommendation, including using a series of existing methods such as pre-training and fine-tuning, multi-scenario joint training, and global learning. These methods are either not effective enough or have quite a few problems in actual online applications. The continuous transfer learning project proposes a simple and effective new cross-domain recommendation method for a series of problems in the application of these methods in business. This method
uses the intermediate layer representation results of the continuously pre-trained source domain model as additional knowledge of the target domain model, and has achieved significant business results in the ranking of good product recommendations on Taobao.
The detailed version of this article Continual Transfer Learning for Cross-Domain Click-Through Rate Prediction at Taobao has been published on ArXiv https://arxiv.org/abs/2208.05728.Method
▐ Existing work and its shortcomingsAnalysis of existing cross-domain work in academia and industry Cross-Domain Recommendation (CDR) related work can be mainly divided into two categories: Joint Learning and Pre-training & Fine-tuning. Among them, the joint training method simultaneously optimizes the source domain (Source Domain) and target domain (Target Domain) models. However, this type of method requires the introduction of source domain data in training, and source domain samples are usually large in size, thus consuming huge computing and storage resources. Many smaller businesses cannot afford such a large resource overhead. On the other hand, this type of method needs to optimize multiple scene goals at the same time, and differences between scenes may also bring negative effects of goal conflicts. Therefore, pre-training-fine-tuning methods have wider applications in many scenes in the industry.
An important feature of the industrial recommendation system is that model training follows the Continual Learning (Continual Learning) paradigm, that is, the model needs to use the latest samples and utilize offline incremental updates (Incremental Learning) or Online Learning and other methods to learn the latest data distribution. For the cross-domain recommendation task studied in this article, the models in the source domain and the target domain both follow the continuous learning training method. We thus propose a new problem that will be widely used in academic and industrial applications: Continual Transfer Learning, defined as moving from one domain that changes over time to another that also changes over time. Domain knowledge transfer. We believe that the application of existing cross-domain recommendation and transfer learning methods in industrial recommendation systems, search engines, computational advertising, etc. should follow the continuous transfer learning paradigm, that is, the transfer process should be continuous and multiple times. The reason is that the data distribution changes rapidly, and only continuous migration can ensure a stable migration effect. Combined with the characteristics of this industrial recommendation system, we can find problems in the practical application of pre-training and fine-tuning. Due to the scene differences between the source domain and the target domain, it is usually necessary to use a large number of samples to obtain a better result by fine-tuning the source domain model. In order to achieve continuous transfer learning, we need to use the latest source domain model to re-fine-tune it every once in a while, resulting in a very huge training cost. This training method is also difficult to go online. In addition, using these large number of samples for fine-tuning may also cause the source domain model to forget the retained useful knowledge, avoiding the catastrophic forgetting problem in the model; using the source domain model parameters to replace the original parameters that have been learned in the target domain can also Useful knowledge gained historically from the original model is discarded. Therefore, we need to design a more efficient continuous transfer learning model suitable for industrial recommendation scenarios. This article proposes a simple and effective model CTNet (Continual Transfer Network, continuous migration network) to solve the above problems. Different from traditional pre-training-fine-tuning methods, the core idea of CTNet is that cannot forget and discard all the knowledge acquired by the model in history, and retains all parameters of the original source domain model and target domain model . These parameters store knowledge gained through very long historical data learning (for example, Taobao's fine ranking model has been continuously incrementally trained for more than two years). CTNet adopts a simple twin-tower structure and uses a lightweight Adapter layer to map the intermediate layer representation results of the continuously pre-trained source domain model as additional knowledge of the target domain model. Unlike pre-training-fine-tuning methods that require backtracking data to achieve continuous transfer learning, CTNet only requires incremental data to be updated, thereby achieving efficient continuous transfer learning. method No need to use a large number of source domain samples Not affected by source domain scenario targets Only incremental data is needed to achieve Continuous transfer learning Joint training No No Yes Pre-training-Fine-tuning Yes Yes No The CTNet proposed in this article is is yes Table 1: Comparison between CTNet and existing cross-domain recommendation models This article explores the new issue of continuous transfer learning: Given the source domain and target domain that continue to change over time, continuous transfer learning (Continual Transfer Learning) hopes to be able to Use historical or currently acquired source domain and target domain knowledge to improve prediction accuracy in the future target domain. We apply the problem of continuous transfer learning to Taobao's cross-domain recommendation task. This task has the following characteristics: Figure 1: Schematic diagram of model deployment Above picture Shows the deployment of our method online. Before the Figure 2: Continuous migration network CTNet As shown in Figure 2, the Continuous Transfer Network (CTNet) model we proposed embeds all the source domain models in the original fine-ranking model of the target domain. The features and their network parameters form a two-tower structure, in which the left tower of CTNet is the Source Tower and the right tower is the Target Tower. Different from the common methods that only use the final scoring score of the source domain model or only use some shallow representations (such as Embedding), we use a lightweight Adapter network to combine all the intermediate hidden layers of the source domain modelMLP (Especially the high-order feature interaction information of user and item contained deeply in the source domain MLP), the representation result The key to improving the effect of CTNet is to utilize the migration of deep representation information in MLP. Drawing on the idea of Gated Linear Units (GLU), the Adapter network uses a gated linear layer, which can effectively implement adaptive feature selection of source domain features. Useful knowledge in the model will be migrated, and information that is inconsistent with the scene characteristics will be transferred. can be filtered out. Since the source domain model continues to use the latest source domain supervision data for continuous pre-training, during our training process, Source Tower will also continue to load the latest updated source domain model parameters and remain fixed during the backpropagation process. , ensuring the efficient progress of continuous transfer learning. Therefore, the CTNet model is very suitable for the continuous learning paradigm, allowing the target domain model to continuously learn the latest knowledge provided by the source domain model to adapt to the latest data distribution changes. At the same time, because the model is only trained on the target domain data, it is ensured that the model is not affected by the source domain training objectives, and does not require source domain data training at all, avoiding a large amount of storage and computing overhead. In addition, such a network structure adopts an additive design method, so that the dimensions of the MLP layer of the original model do not need to be changed during the migration process. Target Tower is completely initialized by the original target domain online model, avoiding random re-initialization of the MLP layer. It can be It ensures that the effect of the original model is not damaged to the greatest extent, and only requires less incremental data to obtain good results, realizing hot start of the model. We define the source domain model as ##Figure 3: CTNet training Table 2: Offline experimental results As shown in the table above, we have the corresponding production data sets in the two sub-scenarios (Domain B and C in the table) with good goods business A series of offline experiments were conducted on the website, in which the source domain (Domain A in the table) is the homepage information flow recommendation scenario. It can be seen that the direct use of information flow recommendations (you may like it on the homepage) ranking model scoring results (Source Domain Model in the table) is not effective in the business of good goods. Compared with the online full volume model, the absolute value is GAUC-5.88. % and GAUC-9.06%, proving the differences between scenarios. We also compared a series of traditional cross-domain recommendation Baseline methods, including common pre-training-fine-tuning methods and joint training methods (such as MLP, PLE, MiNet, DDTCDR, DASL, etc.), and proposed CTNet significantly outperforms existing methods on both data sets. Compared with the full online main model, CTNet achieved significant improvements in GAUC of 1.0% and 3.6% on the two data sets respectively. We further analyzed the advantages of continuous transfer compared to single transfer through experiments. Under the framework of CTNet, the effect improvement brought by a single transfer will attenuate with the incremental update of the model, while continuous transfer learning can ensure the stable improvement of the model effect. Figure 4: Advantages of continuous transfer learning compared to single transfer The following table shows the effect of traditional pre-training-fine-tuning. We use the complete source domain model to train on the target domain data. Due to the differences between fields, a very large number of samples (such as 120-day samples) are needed to adjust the model's effect to a level comparable to the full online Base model. In order to achieve continuous transfer learning, we need to re-adjust using the latest source domain model at regular intervals. The huge cost of each adjustment also makes this method unsuitable for continuous transfer learning. In addition, this method does not surpass the base model without migration in terms of effect. The main reason is that the use of massive target domain sample training also causes the model to forget the original source domain knowledge, and the final model effect obtained by training is similar to a The effect of training only on target domain data. Under the pre-training-fine-tuning paradigm, loading only some Embedding parameters is better than reusing all parameters (as shown in Table 2). Table 3: Effect of training on the target domain using pre-trained source domain model CTNet will be completed by the end of 2021 at the earliest, and will be fully launched in February 2022 for the recommendation business of good products. Compared with the previous generation full model, significant improvements in business indicators have been achieved in two recommendation scenarios: Scenario B: CTR 2.5%, additional purchases 6.7%, number of transactions 3.4%, GMV 7.7%C scenario: CTR 12.3%, length of stay 8.8%, additional purchase 10.9%, number of transactions 30.9%, GMV 31.9% ##CTNet adopts a parallel network structure. To save computing resources, we share some parameters and results of the Attention layer, so that the same parts of the Attention layer in Source Tower and Target Tower only need to be calculated once. Compared with the Base model, CTNet's online response time (RT) is basically the same. This article explores how to implement a cross-domain recommendation model under the framework of continuous learning in the industry, and proposes a new cross-domain recommendation model called continuous transfer learning. The domain recommendation paradigm uses the intermediate layer representation results of the continuously pre-trained source domain model as additional knowledge of the target domain model. A lightweight Adapter module is designed to realize the transfer of cross-domain knowledge and achieves good product recommendation ranking. achieved significant business results. Although this method is implemented for the business characteristics of good goods, it is also a relatively general modeling method. The related modeling methods and ideas can be applied to the optimization of many other similar business scenarios. Since the existing continuous pre-trained source domain model of CTNet only uses information flow recommendation scenarios, in the future we will consider upgrading the continuously pre-trained source domain model to a full-domain learning pre-trained model including recommendation, search, private domain and other more scenarios. Train the model. We are the Taobao technology-content algorithm-good goods algorithm team. Good products are recommended by Taobao based on word-of-mouth, and are a shopping guide designed to help consumers discover good products. The team is responsible for optimizing the full-link algorithm for product recommendation and short video content recommendation business to improve advantageous product mining capabilities and channel shopping guide capabilities. The current main technical directions are continuous transfer learning cross-domain recommendation, unbiased learning, recommendation system full-link modeling, sequence modeling, etc. While creating business value, we have also published several papers at international conferences such as SIGIR. The main results include PDN, UMI, CDAN, etc.
##▐ Problem Definition
moment, the source domain model and the target domain model were trained individually and continuously incrementally using only the supervision data of the respective scenes. Starting from the
moment, we deployed the cross-domain recommendation model CTNet on the target domain. This model will continue to increment on the target domain data without forgetting the knowledge acquired in history. training while continuously transferring knowledge from the latest source domain model.
is mapped to the target recommendation domain, and Add the result to the corresponding layer
# of Target Tower (the formula below represents the situation of
).
, the original single-domain recommended target domain model is
, the newly deployed target domain cross-domain recommendation model is
,
is the cross-domain recommendation model deployment online time, the The model is continuously incrementally updated to time
. The parameters of Adapter, Source Tower and Target Tower are
,
and
respectively. The process of CTNet training is as follows:
Experiment▐ Offline effect
▐ Online effect
The above is the detailed content of Application of continuous transfer learning cross-domain recommendation ranking model in Taobao recommendation system. For more information, please follow other related articles on the PHP Chinese website!

1 前言在发布DALL·E的15个月后,OpenAI在今年春天带了续作DALL·E 2,以其更加惊艳的效果和丰富的可玩性迅速占领了各大AI社区的头条。近年来,随着生成对抗网络(GAN)、变分自编码器(VAE)、扩散模型(Diffusion models)的出现,深度学习已向世人展现其强大的图像生成能力;加上GPT-3、BERT等NLP模型的成功,人类正逐步打破文本和图像的信息界限。在DALL·E 2中,只需输入简单的文本(prompt),它就可以生成多张1024*1024的高清图像。这些图像甚至

Wav2vec 2.0 [1],HuBERT [2] 和 WavLM [3] 等语音预训练模型,通过在多达上万小时的无标注语音数据(如 Libri-light )上的自监督学习,显著提升了自动语音识别(Automatic Speech Recognition, ASR),语音合成(Text-to-speech, TTS)和语音转换(Voice Conversation,VC)等语音下游任务的性能。然而这些模型都没有公开的中文版本,不便于应用在中文语音研究场景。 WenetSpeech [4] 是

“Making large models smaller”这是很多语言模型研究人员的学术追求,针对大模型昂贵的环境和训练成本,陈丹琦在智源大会青源学术年会上做了题为“Making large models smaller”的特邀报告。报告中重点提及了基于记忆增强的TRIME算法和基于粗细粒度联合剪枝和逐层蒸馏的CofiPruning算法。前者能够在不改变模型结构的基础上兼顾语言模型困惑度和检索速度方面的优势;而后者可以在保证下游任务准确度的同时实现更快的处理速度,具有更小的模型结构。陈丹琦 普

由于复杂的注意力机制和模型设计,大多数现有的视觉 Transformer(ViT)在现实的工业部署场景中不能像卷积神经网络(CNN)那样高效地执行。这就带来了一个问题:视觉神经网络能否像 CNN 一样快速推断并像 ViT 一样强大?近期一些工作试图设计 CNN-Transformer 混合架构来解决这个问题,但这些工作的整体性能远不能令人满意。基于此,来自字节跳动的研究者提出了一种能在现实工业场景中有效部署的下一代视觉 Transformer——Next-ViT。从延迟 / 准确性权衡的角度看,

3月27号,Stability AI的创始人兼首席执行官Emad Mostaque在一条推文中宣布,Stable Diffusion XL 现已可用于公开测试。以下是一些事项:“XL”不是这个新的AI模型的官方名称。一旦发布稳定性AI公司的官方公告,名称将会更改。与先前版本相比,图像质量有所提高与先前版本相比,图像生成速度大大加快。示例图像让我们看看新旧AI模型在结果上的差异。Prompt: Luxury sports car with aerodynamic curves, shot in a

人工智能就是一个「拼财力」的行业,如果没有高性能计算设备,别说开发基础模型,就连微调模型都做不到。但如果只靠拼硬件,单靠当前计算性能的发展速度,迟早有一天无法满足日益膨胀的需求,所以还需要配套的软件来协调统筹计算能力,这时候就需要用到「智能计算」技术。最近,来自之江实验室、中国工程院、国防科技大学、浙江大学等多达十二个国内外研究机构共同发表了一篇论文,首次对智能计算领域进行了全面的调研,涵盖了理论基础、智能与计算的技术融合、重要应用、挑战和未来前景。论文链接:https://spj.scien

译者 | 李睿审校 | 孙淑娟近年来, Transformer 机器学习模型已经成为深度学习和深度神经网络技术进步的主要亮点之一。它主要用于自然语言处理中的高级应用。谷歌正在使用它来增强其搜索引擎结果。OpenAI 使用 Transformer 创建了著名的 GPT-2和 GPT-3模型。自从2017年首次亮相以来,Transformer 架构不断发展并扩展到多种不同的变体,从语言任务扩展到其他领域。它们已被用于时间序列预测。它们是 DeepMind 的蛋白质结构预测模型 AlphaFold

说起2010年南非世界杯的最大网红,一定非「章鱼保罗」莫属!这只位于德国海洋生物中心的神奇章鱼,不仅成功预测了德国队全部七场比赛的结果,还顺利地选出了最终的总冠军西班牙队。不幸的是,保罗已经永远地离开了我们,但它的「遗产」却在人们预测足球比赛结果的尝试中持续存在。在艾伦图灵研究所(The Alan Turing Institute),随着2022年卡塔尔世界杯的持续进行,三位研究员Nick Barlow、Jack Roberts和Ryan Chan决定用一种AI算法预测今年的冠军归属。预测模型图


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

Dreamweaver CS6
Visual web development tools

WebStorm Mac version
Useful JavaScript development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software
