search
HomeBackend DevelopmentPython TutorialHow to mix synchronous and asynchronous functions in Python

    Call the synchronization function in the coroutine function

    Directly calling the synchronization function in the coroutine function will block the event loop, thus affecting the performance of the entire program. Let’s look at an example first:

    The following is an example written using the asynchronous web framework FastAPI. FastAPI is relatively fast, but incorrect operations will become very slow.

    import time
    
    from fastapi import FastAPI
    
    app = FastAPI()
    
    
    @app.get("/")
    async def root():
        time.sleep(10)
        return {"message": "Hello World"}
    
    
    @app.get("/health")
    async def health():
        return {"status": "ok"}

    We have written two interfaces above. Assume that the root interface function takes 10 seconds. During these 10 seconds, the health interface is accessed. Think about what will happen. What?

    How to mix synchronous and asynchronous functions in Python

    Access root interface (left), immediately access health interface (right), health interface Blocked until the root interface returns, the health interface responds successfully.

    time.sleep is a "synchronization" function that blocks the entire event loop.

    How to solve it? Think about the previous processing method. If a function blocks the main thread, then open another thread to let the blocking function run alone. Therefore, the same principle applies here. Open a thread to run blocking operations separately, such as reading files, etc.

    loop.run_in_executor method converts the synchronous function into an asynchronous non-blocking mode for processing. Specifically, loop.run_in_executor() You can create the synchronization function as a thread or process and execute the function in it, thereby avoiding blocking the event loop .

    Official example: Execute code in a thread or process pool.

    Then, we use loop.run_in_executor to rewrite the above example as follows:

    import asyncio
    import time
    
    from fastapi import FastAPI
    
    app = FastAPI()
    
    
    @app.get("/")
    async def root():
        loop = asyncio.get_event_loop()
    
        def do_blocking_work():
            time.sleep(10)
            print("Done blocking work!!")
    
        await loop.run_in_executor(None, do_blocking_work)
        return {"message": "Hello World"}
    
    
    @app.get("/health")
    async def health():
        return {"status": "ok"}

    The effect is as follows:

    How to mix synchronous and asynchronous functions in Python

    root While the interface is blocked, health can still access normally without affecting each other.

    Note: This is all for demonstration. When actually developing using FastAPI, you can directly replace async def root with def root , that is, replace it with a synchronous interface function. FastAPI will automatically create a thread internally to process this synchronous interface function. In general, FastAPI internally relies on threads to handle synchronization functions to avoid blocking the main thread (or the event loop in the main thread).

    Call asynchronous functions in synchronous functions

    Coroutines can only be executed within the "event loop", and only one coroutine can be executed at the same time.

    So, the essence of calling an asynchronous function in a synchronous function is to "throw" the coroutine into the event loop and wait for the coroutine to finish executing to obtain the result.

    The following functions can achieve this effect:

    • asyncio.run

    • asyncio.run_coroutine_threadsafe

    • loop.run_until_complete

    • create_task

    Next, we will explain these methods one by one and give examples.

    asyncio.run

    This method is the simplest to use. Let’s first look at how to use it, and then talk about which scenarios cannot be used directlyasyncio.run

    import asyncio
    
    async def do_work():
        return 1
    
    def main():
        result = asyncio.run(do_work())
        print(result)  # 1
    
    if __name__ == "__main__":
        main()

    Justrun is done, and then accept the return value.

    But it is necessary to note that asyncio.run will open a new event loop every time it is called, and automatically close the event loop when it ends.

    There is only one event loop in a thread, so if the current thread already has an existing event loop, you should not use asyncio.run, otherwise it will The following exception will be thrown:

    RuntimeError: asyncio.run() cannot be called from a running event loop

    Therefore, asyncio.run Used when opening a new event loop.

    asyncio.run_coroutine_threadsafe

    Documentation: https://docs.python.org/zh-cn/3/library/asyncio-task.html#asyncio.run_coroutine_threadsafe

    Submit a coroutine to the specified event loop. (Thread-safe)
    Return a concurrent.futures.Future to wait for results from other OS threads.

    In other words, throw the coroutine to the event loop in other threads to run.

    It is worth noting that the "event loop" here should be the event loop in other threads, not the event loop of the current thread.

    The result returned is a future object. If you need to obtain the execution result of the coroutine, you can use future.result() to obtain it. For more information on future objects, see https: //docs.python.org/zh-cn/3/library/concurrent.futures.html#concurrent.futures.Future

    下方给了一个例子,一共有两个线程:thread_with_loopanother_thread,分别用于启动事件循环和调用 run_coroutine_threadsafe

    import asyncio
    import threading
    import time
    
    loop = None
    
    
    def get_loop():
        global loop
        if loop is None:
            loop = asyncio.new_event_loop()
        return loop
    
    
    def another_thread():
        async def coro_func():
            return 1
    
        loop = get_loop()
        # 将协程提交到另一个线程的事件循环中执行
        future = asyncio.run_coroutine_threadsafe(coro_func(), loop)
        # 等待协程执行结果
        print(future.result())
        # 停止事件循环
        loop.call_soon_threadsafe(loop.stop)
    
    
    def thread_with_loop():
        loop = get_loop()
        # 启动事件循环,确保事件循环不会退出,直到 loop.stop() 被调用
        loop.run_forever()
        loop.close()
    
    
    # 启动一个线程,线程内部启动了一个事件循环
    threading.Thread(target=thread_with_loop).start()
    time.sleep(1)
    # 在主线程中启动一个协程, 并将协程提交到另一个线程的事件循环中执行
    t = threading.Thread(target=another_thread)
    t.start()
    t.join()

    loop.run_until_complete

    文档: https://docs.python.org/zh-cn/3.10/library/asyncio-eventloop.html#asyncio.loop.run_until_complete

    运行直到 future ( Future 的实例 ) 被完成。

    这个方法和 asyncio.run 类似。

    具体就是传入一个协程对象或者任务,然后可以直接拿到协程的返回值。

    run_until_complete 属于 loop 对象的方法,所以这个方法的使用前提是有一个事件循环,注意这个事件循环必须是非运行状态,如果是运行中就会抛出如下异常:

    RuntimeError: This event loop is already running

    例子:

    loop = asyncio.new_event_loop()
    loop.run_until_complete(do_async_work())

    create_task

    文档: https://docs.python.org/zh-cn/3/library/asyncio-task.html#creating-tasks

    再次准确一点:要运行一个协程函数的本质是将携带协程函数的任务提交至事件循环中,由事件循环发现、调度并执行。

    其实一共就是满足两个条件:

    • 任务;

    • 事件循环。

    我们使用 async def func 定义的函数叫做协程函数func() 这样调用之后返回的结果是协程对象,到这一步协程函数内的代码都没有被执行,直到协程对象被包装成了任务,事件循环才会“正眼看它们”。

    所以事件循环调度运行的基本单元就是任务,那为什么我们在使用 async/await 这些语句时没有涉及到任务这个概念呢?

    这是因为 await 语法糖在内部将协程对象封装成了任务,再次强调事件循环只认识任务

    所以,想要运行一个协程对象,其实就是将协程对象封装成一个任务,至于事件循环是如何发现、调度和执行的,这个我们不用关心。

    那将协程封装成的任务的方法有哪些呢?

    • asyncio.create_task

    • asyncio.ensure_future

    • loop.create_task

    看着有好几个的,没关系,我们只关心 loop.create_task,因为其他方法最终都是调用 loop.create_task

    使用起来也是很简单的,将协程对象传入,返回值是一个任务对象。

    async def do_work():
        return 222
    
    task = loop.create_task(do_work())

    do_work 会被异步执行,那么 do_work 的结果怎么获取呢,task.result() 可以吗?

    分情况:

    • 如果是在一个协程函数内使用 await task.result(),这是可以的;

    • 如果是在普通函数内则不行。你不可能立即获得协程函数的返回值,因为协程函数还没有被执行呢。

    asyncio.Task 运行使用 add_done_callback 添加完成时的回调函数,所以我们可以「曲线救国」,使用回调函数将结果添加到队列、Future 等等。

    我这里给个基于 concurrent.futures.Future 获取结果的例子,如下:

    import asyncio
    from asyncio import Task
    from concurrent.futures import Future
    
    from fastapi import FastAPI
    
    app = FastAPI()
    loop = asyncio.get_event_loop()
    
    
    async def do_work1():
        return 222
    
    
    @app.get("/")
    def root():
        # 新建一个 future 对象,用于接受结果值
        future = Future()
    
        # 提交任务至事件循环
        task = loop.create_task(do_work1())
    
        # 回调函数
        def done_callback(task: Task):
            # 设置结果
            future.set_result(task.result())
    
        # 为这个任务添加回调函数
        task.add_done_callback(done_callback)
    
        # future.result 会被阻塞,直到有结果返回为止
        return future.result()  # 222

    The above is the detailed content of How to mix synchronous and asynchronous functions in Python. For more information, please follow other related articles on the PHP Chinese website!

    Statement
    This article is reproduced at:亿速云. If there is any infringement, please contact admin@php.cn delete
    Python: Automation, Scripting, and Task ManagementPython: Automation, Scripting, and Task ManagementApr 16, 2025 am 12:14 AM

    Python excels in automation, scripting, and task management. 1) Automation: File backup is realized through standard libraries such as os and shutil. 2) Script writing: Use the psutil library to monitor system resources. 3) Task management: Use the schedule library to schedule tasks. Python's ease of use and rich library support makes it the preferred tool in these areas.

    Python and Time: Making the Most of Your Study TimePython and Time: Making the Most of Your Study TimeApr 14, 2025 am 12:02 AM

    To maximize the efficiency of learning Python in a limited time, you can use Python's datetime, time, and schedule modules. 1. The datetime module is used to record and plan learning time. 2. The time module helps to set study and rest time. 3. The schedule module automatically arranges weekly learning tasks.

    Python: Games, GUIs, and MorePython: Games, GUIs, and MoreApr 13, 2025 am 12:14 AM

    Python excels in gaming and GUI development. 1) Game development uses Pygame, providing drawing, audio and other functions, which are suitable for creating 2D games. 2) GUI development can choose Tkinter or PyQt. Tkinter is simple and easy to use, PyQt has rich functions and is suitable for professional development.

    Python vs. C  : Applications and Use Cases ComparedPython vs. C : Applications and Use Cases ComparedApr 12, 2025 am 12:01 AM

    Python is suitable for data science, web development and automation tasks, while C is suitable for system programming, game development and embedded systems. Python is known for its simplicity and powerful ecosystem, while C is known for its high performance and underlying control capabilities.

    The 2-Hour Python Plan: A Realistic ApproachThe 2-Hour Python Plan: A Realistic ApproachApr 11, 2025 am 12:04 AM

    You can learn basic programming concepts and skills of Python within 2 hours. 1. Learn variables and data types, 2. Master control flow (conditional statements and loops), 3. Understand the definition and use of functions, 4. Quickly get started with Python programming through simple examples and code snippets.

    Python: Exploring Its Primary ApplicationsPython: Exploring Its Primary ApplicationsApr 10, 2025 am 09:41 AM

    Python is widely used in the fields of web development, data science, machine learning, automation and scripting. 1) In web development, Django and Flask frameworks simplify the development process. 2) In the fields of data science and machine learning, NumPy, Pandas, Scikit-learn and TensorFlow libraries provide strong support. 3) In terms of automation and scripting, Python is suitable for tasks such as automated testing and system management.

    How Much Python Can You Learn in 2 Hours?How Much Python Can You Learn in 2 Hours?Apr 09, 2025 pm 04:33 PM

    You can learn the basics of Python within two hours. 1. Learn variables and data types, 2. Master control structures such as if statements and loops, 3. Understand the definition and use of functions. These will help you start writing simple Python programs.

    How to teach computer novice programming basics in project and problem-driven methods within 10 hours?How to teach computer novice programming basics in project and problem-driven methods within 10 hours?Apr 02, 2025 am 07:18 AM

    How to teach computer novice programming basics within 10 hours? If you only have 10 hours to teach computer novice some programming knowledge, what would you choose to teach...

    See all articles

    Hot AI Tools

    Undresser.AI Undress

    Undresser.AI Undress

    AI-powered app for creating realistic nude photos

    AI Clothes Remover

    AI Clothes Remover

    Online AI tool for removing clothes from photos.

    Undress AI Tool

    Undress AI Tool

    Undress images for free

    Clothoff.io

    Clothoff.io

    AI clothes remover

    AI Hentai Generator

    AI Hentai Generator

    Generate AI Hentai for free.

    Hot Article

    R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
    4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
    R.E.P.O. Best Graphic Settings
    4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
    R.E.P.O. How to Fix Audio if You Can't Hear Anyone
    4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
    R.E.P.O. Chat Commands and How to Use Them
    4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌

    Hot Tools

    DVWA

    DVWA

    Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

    Notepad++7.3.1

    Notepad++7.3.1

    Easy-to-use and free code editor

    Safe Exam Browser

    Safe Exam Browser

    Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

    mPDF

    mPDF

    mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

    MantisBT

    MantisBT

    Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.